Estableciendo un nuevo flujo de trabajo en el estudio de la distribución de la reducción en núcleos

Autores/as

  • Diego Lombao Institut Català de Paleoecologia Humana i Evoluciò Social (IPHES) & Grupo de Estudos para a Prehistoria do Noroeste Ibérico–Arqueoloxía, Antigüidade e Territorio (GEPN-AAT)
  • José Ramón Rabuñal Instituto Universitario de Investigación en Arqueología y Patrimonio Histórico (INAPH) & Aarhus University http://orcid.org/0000-0002-5757-1897
  • Arturo Cueva-Temprana Max Planck Institute for the Science of Human History http://orcid.org/0000-0002-2753-8949
  • Marina Mosquera Universitat Rovira i Virgili (URV) & Institut Català de Paleoecologia Humana i Evoluciò Social (IPHES) http://orcid.org/0000-0003-4823-6154
  • Juan Ignacio Morales Institut Català de Paleoecologia Humana i Evoluciò Social (IPHES) & Universitat Rovira i Virgili (URV) http://orcid.org/0000-0002-8253-414X

DOI:

https://doi.org/10.2218/jls.7257

Palabras clave:

Cores; Weibull Distribution; Reduction Intensity; Volumetric Reconstruction Method; Scar Density Index; Non-Cortical Surface; Lithic Technology

Resumen

La proliferación de enfoques orientados al estudio de la vida de uso o reducción de los útiles líticos en las últimas décadas ha permitido profundizar en aspectos del comportamiento humano más allá de la propia estructura tecnológica, relacionados con la dinámica de ocupación y la gestión económica de los recursos líticos. No obstante, estudios previos en este campo han mostrado una mayor capacidad inferencial de las distribuciones de la intensidad de reducción de los conjuntos sobre valores promediados. En este sentido, el análisis de supervivencia y, más concretamente, las distribuciones Weibull, son una de las principales herramientas inferenciales utilizadas en los estudios de intensidad de reducción. Sin embargo, hasta la fecha no se ha comprobado experimentalmente la resolución de las curvas Weibull obtenidas a partir de diferentes métodos.

En este trabajo, presentamos una evaluación del potencial inferencial de algunos de los principales métodos utilizados en el estudio de la intensidad de reducción en núcleos, como el Volumetric Reconstruction Method, el Scar Density Index y el porcentaje de superficie no cortical. Por primera vez, esta exploración se ha llevado a cabo desde una doble perspectiva: comparando la resolución de las curvas de distribución de Weibull obtenidas por cada método y estudiando la variabilidad intra-conjunto de la reducción a nivel individual mediante análisis multivariantes que combinan los diferentes índices de reducción.

Los materiales utilizados en este trabajo son los mismos núcleos experimentales realizados en trabajos previos (Lombao et al. 2020). El conjunto experimental está compuesto por 64 cantos fluviales recogidos de las terrazas del río Arlanzón (Burgos, España) y en cuyo experimento han participado cuatro talladores diferentes siguiendo cuatro estrategias de talla diferentes: unipolar unifacial, multipolar bifacial centrípeto, multipolar multifacial y bifaces.

Los resultados obtenidos demuestran una fuerte correlación positiva entre estos enfoques y la intensidad de reducción real. Además, se encontraron distribuciones Weibull similares para el porcentaje de superficie no cortical y el Volumetric Reconstruction Method. Sin embargo, en el caso del Scar Density Index, para obtener distribuciones similares a las distribuciones reales, ha sido necesario en primer lugar la transformación logarítmica del Scar Density Index y la normalización min-max de los datos. Los resultados también indican una variación intra-conjunto similar y un alto porcentaje de concordancia entre las diferentes aproximaciones empleadas. Todo ello indica que todas las propuestas aquí evaluadas son métodos útiles y estadísticamente fiables para estimar el grado de reducción en núcleos.

Además, para evaluar la sensibilidad de las curvas de distribución de Weibull, hemos submuestreado aleatoriamente el conjunto experimental a intervalos de cada 10%, lo que nos ha permitido observar la evolución de los parámetros Shape y Scale de las distribuciones Weibull tanto de los datos reales como de los distintos índices a medida que se transforma el conjunto.

Los resultados muestran que no hay grandes variaciones en los valores de Shape y Scale de los datos reales de reducción a medida que disminuye el porcentaje de núcleos en el conjunto. Sin embargo, los métodos responden de forma diferente a estos cambios en el conjunto experimental. Así el porcentaje de superficie no cortical y el Volumetric Reconstruction Method permanecen estables a lo largo de las simulaciones. Sin embargo, la normalización min-max de la transformación logarítmica del Scar Density Index muestra mayores oscilaciones en el caso del valor Shape, mientras que el valor Scale es más estable.

Finalmente, se propone un flujo de trabajo para abordar el estudio de la intensidad de reducción en conjuntos arqueológicos integrando diferentes métodos en un mismo estudio. Además, el uso del Análisis de Componentes Principales para combinar índices proporciona una nueva visión de la variabilidad interna de los conjuntos, permitiendo una evaluación más precisa del grado de reducción de cada núcleo.

Biografía del autor/a

Diego Lombao, Institut Català de Paleoecologia Humana i Evoluciò Social (IPHES) & Grupo de Estudos para a Prehistoria do Noroeste Ibérico–Arqueoloxía, Antigüidade e Territorio (GEPN-AAT)

Grupo de Estudos para a Prehistoria do Noroeste Ibérico–Arqueoloxía, Antigüidade e Territorio (GEPN-AAT)
Departamento de Histori
Facultade de Xeografía e Historia
Universitat Santiago de Compostela
Praza da Universidade 1
15782 Santiago de Compostela
Spain

Institut Català de Paleoecologia Humana i Evoluciò Social (IPHES)
Zona educacional 4 (Edif. W3)
Campus Sescelades URV
43007 Tarragona
Spain

José Ramón Rabuñal, Instituto Universitario de Investigación en Arqueología y Patrimonio Histórico (INAPH) & Aarhus University

Instituto Universitario de Investigación en Arqueología y Patrimonio Histórico (INAPH)
Universidad de Alicante, Alicante
Institutos Universitarios-Parque Científico
Carretera de San Vicente de Raspeig
S/N, San Vicente del Raspeig, 03690
Spain

Department of Archaeology and Heritage Studies
Aarhus University
Moesgård Allé 20
8270, Højbjerg
Denmark

Arturo Cueva-Temprana, Max Planck Institute for the Science of Human History

Department of Archaeology
Max Planck Institute for the Science of Human History
Kahlaische Strasse 10
07745 Jena
Germany

Marina Mosquera, Universitat Rovira i Virgili (URV) & Institut Català de Paleoecologia Humana i Evoluciò Social (IPHES)

Universitat Rovira i Virgili (URV)
Campus Catalunya
Avinguda de Catalunya, 35
43002 Tarragona
Spain

Institut Català de Paleoecologia Humana i Evoluciò Social (IPHES)
Zona educacional 4 (Edif. W3)
Campus Sescelades URV
43007 Tarragona
Spain

Juan Ignacio Morales, Institut Català de Paleoecologia Humana i Evoluciò Social (IPHES) & Universitat Rovira i Virgili (URV)

Institut Català de Paleoecologia Humana i Evoluciò Social (IPHES)
Zona educacional 4 (Edif. W3)
Campus Sescelades URV
43007 Tarragona
Spain

Universitat Rovira i Virgili (URV)
Campus Catalunya
Avinguda de Catalunya 35
43002 Tarragona
Spain

Citas

Andrefsky, W.J. 1994, Raw-Material Availability and the Organization of Technology. American Antiquity, 59(1): 21-34. DOI: https://doi.org/10.2307/3085499
Andrefsky, W.J. 2009, The analysis of stone tool procurement, production, and maintenance. Journal of Archaeological Research, 17(1): 65-103. URL: http://www.jstor.org/stable/41053258
Bamforth, D.B. 1986, Technological Efficiency and Tool Curation. American Antiquity, 51: 38-50. DOI: https://doi.org/10.2307/280392
Bamforth, D.B. 1990, Settlement, raw material, and lithic procurement in the central Mojave Desert. Journal of Anthropological Archaeology, 9(1): 70-104. DOI: https://doi.org/10.1016/0278-4165(90)90006-Y
Binford, L.R. 1979, Organization and formation processes: looking at curated technologies. Journal of Anthropological Research, 34: 255-273. URL: https://www.jstor.org/stable/3629902
Blades, B.S. 2003, End scraper reduction and hunter-gatherer mobility. American Antiquity, 68(1): 141-156. DOI: https://doi.org/10.2307/3557037
Bustos-Pérez, G. & Baena, J. 2019, Exploring volume lost in retouched artifacts using height of retouch and length of retouched edge. Journal of Archaeological Science: Reports, 27: 101922. DOI: https://doi.org/10.1016/j.jasrep.2019.101922
Cardillo, M., Charlin, J., Arriaga, L.C., Corada, J.P.D., Moreno, E., González-José, R. & Shott, M. 2021, Functional efficiency and life history of Late Holocene lithic points from southern Patagonia: An experimental estimation using survival curves models. Journal of Archaeological Science: Reports, 38: 103023. DOI: https://doi.org/10.1016/j.jasrep.2021.103023
Clarkson, C. 2002, An Index of Invasiveness for the Measurement of Unifacial and Bifacial Retouch: A Theoretical, Experimental and Archaeological Verification. Journal of Archaeological Science, 29(1): 65-75. DOI: https://doi.org/10.1006/jasc.2001.0702
Clarkson, C. 2013, Measuring core reduction using 3D flake scar density: a test case of changing core reduction at Klasies River Mouth, South Africa. Journal of Archaeological Science, 40(12): 4348-4357. DOI: https://doi.org/10.1016/j.jas.2013.06.007
Clarkson, C., Shipton, C. & Weisler, M. 2014, Determining the reduction sequence of Hawaiian quadrangular adzes using 3D approaches: a case study from Moloka'i. Journal of Archaeological Science, 49: 361-371. DOI: https://doi.org/10.1016/j.jas.2014.05.031
Cueva-Temprana, A., Lombao, D., Soto, M., Itambu, M., Bushozi, P., Boivin, N., Petraglia, M. & Mercader, J. 2022, Oldowan Technology Amid Shifting Environments ∼2.03 - 1.83 Million Years Ago. Frontiers in Ecology and Evolution, 10: 1-14. DOI: https://doi.org/10.3389/fevo.2022.788101
Delignette-Muller, M.L. & Dutang, C. 2015, "fitdistrplus: An R Package for Fitting Distributions.". Journal of Statistical Software, 64: 1-34. DOI: https://doi.org/10.18637/jss.v064.i04
Dibble, H.L. 1995, Middle Paleolithic scraper reduction: background, clarification, and review of the evidence to date. Journal of Archaeological Method and Theory, 2: 299-368. DOI: https://doi.org/10.1007/BF02229003
Ditchfield, K. 2016, The influence of raw material size on stone artefact assemblage formation: An example from Bone Cave, south-western Tasmania. Quaternary International, 422: 29-43. DOI: https://doi.org/10.1016/j.quaint.2016.03.013
Dorner, W.W. 1999, Using Microsoft Excel for Weibull Analysis. Quality Digest, 19: 33-41.
Douglass, M.J., Lin, S.C., Braun, D.R. & Plummer, T.W. 2018, Core Use-Life Distributions in Lithic Assemblages as a Means for Reconstructing Behavioral Patterns. Journal of Archaeological Method and Theory, 25(1): 254-288. DOI: https://doi.org/10.1007/s10816-017-9334-22
Eren, M.I., Domínguez-Rodrigo, M., Kuhn, S.L., Adler, D.S., Le, I. & Bar-Yosef, O. 2005, Defining and measuring reduction in unifacial stone tools. Journal of Archaeological Science, 32(8): 1190-1201. DOI: https://doi.org/10.1016/j.jas.2005.03.003
Eren, M.I. & Prendergast, M.E. 2008, Comparing and synthesizing unifacial stone tool reduction indexes. In: Lithic Technology, Measures of Production, Use and Curation (Andrefsky, W. Jr. ed). Cambridge University Press. p. 49-84. DOI: https://doi.org/10.1017/CBO9780511499661.004
Eren, M.I. & Sampson, C.G. 2009, Kuhn’s Geometric Index of Unifacial Stone Tool Reduction (GIUR): does it measure missing flake mass?. Journal of Archaeological Science, 36(6): 1243-1247. DOI: https://doi.org/10.1016/j.jas.2009.01.011
García-Medrano, P., Ollé, A., Ashton, N. & Roberts, M.B. 2018, The Mental Template in Handaxe Manufacture: New Insights into Acheulean Lithic Technological Behavior at Boxgrove, Sussex, UK. Journal of Archaeological Method and Theory, 26 (1): 396-422. DOI: https://doi.org/10.1007/S10816-018-9376-0
Glauberman, P., Gasparyan, B., Wilkinson, K., Frahm, E., Nahapetyan, S., Arakelyan, D., Raczynski-Henk, Y., Haydosyan, H. & Adler, D.S. 2020, Late Middle Paleolithic Technological Organization and Behavior at the Open-Air Site of Barozh 12 (Armenia). Journal of Paleolithic Archaeology, 3: 1095-1148. DOI: https://doi.org/10.1007/s41982-020-00071-4
Groucutt, H.S., Scerri, E.M.L., Amor, K., Shipton, C., Jennings, R.P., Parton, A., Clark-Balzan, L., Alsharekh, A. & Petraglia, M.D. 2017, Middle Palaeolithic raw material procurement and early stage reduction at Jubbah, Saudi Arabia. Archaeological Research in Asia, 9(3): 44-62. DOI: https://doi.org/10.1016/j.ara.2017.01.003
Groucutt, H.S., Shipton, C., Alsharekh, A., Jennings, R., Scerri, E.M.L. & Petraglia, M.D. 2015, Late Pleistocene lakeshore settlement in northern Arabia: Middle Palaeolithic technology from Jebel Katefeh, Jubbah. Quaternary International, 382(7): 215-236. DOI: https://doi.org/10.1016/j.quaint.2014.12.001
Hartigan, J.A. & Wong, M.A. 1979, Algorithm AS 136: A K-Means Clustering Algorithm. Applied Statistics, 28(1): 100-108. DOI: https://doi.org/10.2307/2346830
Hawkins, R. & Mosig Way, A. 2020, Rethinking the Desirability of Quartz for the Manufacture of Standardized Retouched Flakes: An Example From Weereewaa (Lake George), South-eastern Australia. Lithic Technology, 45(3): 197-212. DOI: https://doi.org/10.1080/01977261.2020.1768687
Herzlinger, G., Brenet, M., Varanda, A., Deschamps, M. & Goren-Inbar, N. 2021, Revisiting the Acheulian Large Cutting Tools of ‘Ubeidiya, Israel. Journal of Paleolithic Archaeology, 4 (4): 1-29. DOI: https://doi.org/10.1007/s41982-021-00108-2
Hiscock, P. & Clarkson, C. 2009, The reality of reduction experiments and the GIUR: reply to Eren and Sampson. Journal of Archaeological Science, 36(7): 1576-1581. DOI: https://doi.org/10.1016/j.jas.2009.03.019
Hiscock, P. & Tabrett, A. 2010, Generalization, inference and the quantification of lithic reduction. World Archaeology, 42: 545-561. DOI: https://doi.org/10.1080/00438243.2010.517669
Ioviţǎ, R. 2011, Shape Variation in Aterian Tanged Tools and the Origins of Projectile Technology: A Morphometric Perspective on Stone Tool Function. PLoS ONE, 6(12): e2029. DOI: https://doi.org/10.1371/journal.pone.0029029
Kassambara, A. & Mundt, F. 2021, Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.4.1717. URL: https://CRAN.R-project.org/package=factoextra
Kelly, R.L. 1992, Mobility/Sedentism: Concepts, Archaeological Measures, and Effects. Annual Review of Anthropology, 21(1): 43-66. DOI: http://www.jstor.org/stable/2155980
Kuhn, S.L. 1990, A Geometric Index of Reduction for Unifacial Stone Tools. Journal of Archaeological Science, 17: 583-593. DOI: https://doi.org/10.1016/0305-4403(90)90038-7
Kuhn, S.L. 1991, "Unpacking" Reduction: Lithic Raw Material Economy in the Mousterian of West-Central Italy. Journal of Anthropological Research, 10(1): 76-106. DOI: https://doi.org/10.1016/0278-4165(91)90022-P
Lê, S., Josse, J. & Husson, F. 2008, FactoMineR : An R Package for Multivariate Analysis. Journal of Statistical Software, 25(1): 1-18. DOI: https://doi.org/10.18637/jss.v025.i01
Li, H., Kuman, K. & Li, C. 2015, Quantifying the Reduction Intensity of Handaxes with 3D Technology: A Pilot Study on Handaxes in the Danjiangkou Reservoir Region, Central China. PLoS ONE, 10(9): e0135613. DOI: https://doi.org/10.1371/journal.pone.0135613
Lin, S.C., Douglass, M.J., Holdaway, S.J. & Floyd, B. 2010, The application of 3D laser scanning technology to the assessment of ordinal and mechanical cortex quantification in lithic analysis. Journal of Archaeological Science, 37(4): 694-702. DOI: https://doi.org/10.1016/j.jas.2009.10.030
Lin, S.C., Pop, C.M., Dibble, H.L., Archer, W., Desta, D., Weiss, M. & Mcpherron, S.P. 2016, A core reduction experiment finds no effect of original size and reduction intensity on flake debris size distribution. American Antiquity, 81(3), 562-575. DOI: https://doi.org/10.7183/0002-7316.81.3.562
Lombao, D. 2019, VRM experiment raw data [Data set]. Zenodo. DOI: https://doi.org/10.5281/zenodo.3368659
Lombao, D. 2021, Reducción y gestión volumétrica: aproximación a la variabilidad y evolución de las dinámicas de explotación durante el Pleistoceno inferior y medio europeo, a través de los conjuntos de Gran Dolina y Galería (Sierra de Atapuerca, Burgos) y de El Barranc de la Boella ( La Canonja, Tarragona). Ph.D. thesis at the Department of History and Art History, Universitat Rovira i Virgili, Tarragona, 1-672 p. (Reduction and volumetric management: an approach to the variability and evolution of exploitation dynamics during the Early and Middle Pleistocene in Europe, through the Gran Dolina and Galería assemblages (Atapuerca, Burgos) and El Barranc de la Boella (Tarragona)). URL: http://hdl.handle.net/10803/673185
Lombao, D., Cueva-Temprana, A., Mosquera, M. & Morales, J.I. 2020, A new approach to measure reduction intensity on cores and tools on cobbles: the Volumetric Reconstruction Method. Archaeological and Anthropological Sciences, 12(9): 222. DOI: https://doi.org/10.1007/s12520-020-01154-7
Lombao, D., Cueva-Temprana, A., Rabuñal, J.R., Morales, J.I. & Mosquera, M. 2019, The effects of blank size and knapping strategy on the estimation of core’s reduction intensity. Archaeological and Anthropological Sciences, 11(10): 5445-5461. DOI: https://doi.org/10.1007/s12520-019-00879-4
Lombao, D., Rabuñal, J.R., Cueva-Temprana, A., Mosquera, M. & Morales, J.I. 2023, Supplementary materials of the manuscript "Establishing a new workflow in the study of core reduction intensity and distribution". Zenodo. DOI: https://doi.org/10.5281/zenodo.6695183
Lombao, D., Rabuñal, J.R., Morales, J.I., Ollé, A., Carbonell, E. & Mosquera, M. 2022, The Technological Behaviours of Homo antecessor: Core Management and Reduction Intensity at Gran Dolina-TD6.2 (Atapuerca, Spain). Journal of Archaeological Method and Theory. DOI: https://doi.org/10.1007/s10816-022-09579-1
Marreiros, J. & Bicho, N. 2013, Lithic technology variability and human ecodynamics during the Early Gravettian of Southern Iberian Peninsula. Quaternary International, 318(18): 90-101. DOI: https://doi.org/10.1016/J.QUAINT.2013.05.008
Marwick, B. 2017, Computational Reproducibility in Archaeological Research: Basic Principles and a Case Study of Their Implementation. Journal of Archaeological Method and Theory, 24(2): 424-450. DOI: https://doi.org/10.1007/s10816-015-9272-9
McCall, G.S. 2012, Ethnoarchaeology and the Organization of Lithic Technology. Journal of Archaeological Research, 20(2): 157-203. DOI: https://doi.org/10.1007/S10814-011-9056-Z
Morales, J.I. 2016, Distribution patterns of stone-tool reduction: Establishing frames of reference to approximate occupational features and formation processes in Paleolithic societies. Journal of Anthropological Archaeology, 41(Suppl.): 231-245. DOI: https://doi.org/10.1016/j.jaa.2016.01.004
Morales, J.I., Lorenzo, C. & Vergès, J.M. 2015a, Measuring Retouch Intensity in Lithic Tools: A New Proposal Using 3D Scan Data. Journal of Archaeological Method and Theory, 22(2): 543-558. DOI: https://doi.org/10.1007/s10816-013-9189-0
Morales, J.I., Soto, M., Lorenzo, C. & Vergès, J.M. 2015b, The evolution and stability of stone tools: The effects of different mobility scenarios in tool reduction and shape features. Journal of Archaeological Science: Reports, 3: 295-305. DOI: https://doi.org/10.1016/j.jasrep.2015.06.019
Muller, A., Clarkson, C., Baird, D. & Fairbairn, A. 2018, Reduction intensity of backed blades: Blank consumption, regularity and efficiency at the early Neolithic site of Boncuklu, Turkey. Journal of Archaeological Science: Reports, 21: 721-732. DOI: https://doi.org/10.1016/j.jasrep.2018.08.042
Nelson, M.C. 1991, The study of technological organization. Archaeological Method and Theory, 3: 57-100. URL: https://www.jstor.org/stable/20170213
Odell, G.H. 1996, Stone Tools and Mobility in the Illinois Valley: From Hunter-Gatherer Camps to Agricultural Villages. Berghahn Books, Ann Arbor, Michigan, 418 p.
Parry, W. & Kelly, R.L. 1987, Expedient core technology and sedentism. In: The organization of core technology (Johnson, J.K. & Morrow, C.A., Eds.). Westview Press, Boulder. p. 285-304.
Reeves, J.S., Braun, D.R., Finestone, E.M. & Plummer, T.W. 2021, Ecological perspectives on technological diversity at Kanjera South. Journal of Human Evolution, 158: 103029. DOI: https://doi.org/10.1016/J.JHEVOL.2021.103029
Sánchez-Yustos, P., Diez-Martín, F., Domínguez-Rodrigo, M., Duque, J., Fraile, C., Díaz, I., de Francisco, S., Baquedano, E. & Mabulla, A. 2017, The origin of the Acheulean. Techno-functional study of the FLK W lithic record (Olduvai, Tanzania). PLOS ONE, 12(8): e0179212. DOI: https://doi.org/10.1371/journal.pone.0179212
Shipton, C. & Clarkson, C. 2015a, Flake scar density and handaxe reduction intensity. Journal of Archaeological Science: Reports, 2: 169-175. DOI: https://doi.org/10.1016/j.jasrep.2015.01.013
Shipton, C. & Clarkson, C. 2015b, Handaxe reduction and its influence on shape: An experimental test and archaeological case study. Journal of Archaeological Science: Reports, 3: 408-419. DOI: https://doi.org/10.1016/j.jasrep.2015.06.029
Shipton, C., Clarkson, C., Bernal, M.A., Boivin, N., Finlayson, C., Finlayson, G., Fa, D., Pacheco, F.G. & Petraglia, M. 2013, Variation in Lithic Technological Strategies among the Neanderthals of Gibraltar, 8(6): e65185. DOI: https://doi.org/10.1371/journal.pone.0065185
Shipton, C., O’Connor, S., Jankowski, N., O’Connor-Veth, J., Maloney, T., Kealy, S. & Boulanger, C. 2019, A new 44,000-year sequence from Asitau Kuru (Jerimalai), Timor-Leste, indicates long-term continuity in human behaviour. Archaeological and Anthropological Sciences, 11(10): 5717-5741. DOI: https://doi.org/10.1007/s12520-019-00840-5
Shott, M. 1986, Technological organization and settlement mobility: an ethnographic examination. Journal of Anthropological Research, 42(1): 15-51. URL: https://www.jstor.org/stable/3630378
Shott, M.J. 1996, An exegesis of the curation concept. Journal of Anthropological Research, 52(3): 259-280. URL: https://www.jstor.org/stable/3630085
Shott, M.J. 2002, Weibull Estimation on Use Life Distribution in Experimental Spear-Point Data. Lithic Technology, 27(2): 93-109. DOI: https://doi.org/10.1080/01977261.2002.11720993
Shott, M.J. 2010, Stone-Tool Demography: Reduction Distributions in North American Paleoindian Tools. In: New Perspectives on Old Stones: Analytical Approaches to Paleolithic Technologies (Lycett, S. & Chauhan, P., Eds.). Springer New York, New York, NY. p. 275-293.
Shott, M.J. 2016, Survivorship Distributions in Experimental Spear Points: Implications for Tool Design and Assemblage Formation. In: Multidisciplinary Approaches to the Study of Stone Age Weaponry. (Iovita, R. & Sano, K., Eds.). Springer, Dordrecht. p. 245-258.
Shott, M.J. & Seeman, M.F. 2015, Curation and recycling: estimating Paleoindian endscraper curation rates at Nobles Pond, Ohio, USA. Quaternary International, 361: 319-331. DOI: https://doi.org/10.1016/j.quaint.2014.06.023
Shott, M.J. & Sillitoe, P. 2004, Modeling Use-Life Distributions in Archaeology Using New Guinea Wola Ethnographic Data. American Antiquity, 69(2): 339-355. DOI: https://doi.org/10.2307/4128424
Shott, M.J. & Sillitoe, P. 2005, Use life and curation in New Guinea experimental used flakes. Journal of Archaeological Science, 32: 653-663. DOI: https://doi.org/10.1016/j.jas.2004.11.012
Team, R.C. (2021), R: A language and environment for statistical computing (R v. 4.2.2). R Foundation for Statistical Computing, Vienna. URL: https://www.R-project.org/
Team, R.S. 2020 RStudio Team (2020), RStudio: Integrated Development for R. (RStudio, v. 4.2.2) PBC, Boston. URL: http://www.rstudio.com/
Valletta, F., Dag, I. & Grosman, L. 2021, Identifying Local Learning Communities During the Terminal Palaeolithic in the Southern Levant: Multi-scale 3-D Analysis of Flint Cores. Journal of Computer Applications in Archaeology, 4(1): 145-168. DOI: https://doi.org/10.5334/jcaa.74
Werner, J.J. & Willoughby, P.R. 2017, Middle Stone Age Technology and Cultural Evolution at Magubike Rockshelter, Southern Tanzania. African Archaeological Review, 34(6: 249-273. DOI: https://doi.org/10.1007/s10437-017-9254-2

Descargas

Publicado

21-dic-2023

Cómo citar

Lombao, D., Rabuñal, J. R., Cueva-Temprana, A., Mosquera, M., & Morales, J. I. (2023). Estableciendo un nuevo flujo de trabajo en el estudio de la distribución de la reducción en núcleos. Journal of Lithic Studies, 10(2), 25 p. https://doi.org/10.2218/jls.7257