Leveraging Machine Learning for Photometric Redshift Estimation of JWST Galaxies
DOI:
https://doi.org/10.2218/esjs.9996Keywords:
Astrophysics, JWST, Machine Learning, Galaxies, RedshiftAbstract
With the launch of JWST, the volume and complexity of astronomical data are increasing, a trend that will continue with future instruments such as SKA and Euclid. It is inevitable that data-driven methods will become more prominent alongside model-driven analysis. This research utilises machine learning, specifically a kernelised local linear regression model, in photometric redshift predictions of galaxies observed with JWST. With a spectroscopic dataset of 4605 galaxies, we trained the model and achieved a deviation of σdz = 0.018 and a catastrophic outlier rate of foutlier = 3.5%. These results demonstrate high accuracy and computational efficiency, highlighting the potential of machine learning for astronomical data analysis, in particular for large-scale surveys.
References
Baron, D. ‘Machine Learning in Astronomy: A Practical Overview’ arXiv e-prints (2019)
Beck, R. et al. ‘Photometric Redshifts for the SDSS Data Release 12’ Monthly Notices of the Royal Astronomical Society 460 2 (2016)
Begley, R. et al. ‘The Evolution of [OIII]+Hβ Equivalent Width From z≃ 3 − 8: Implications for the Production and Escape of Ionizing Photons During Reionization’ arXiv e-prints (2024)
Brammer, G. B. et al. ‘EAZY: A Fast, Public Photometric Redshift Code’ The Astrophysical Journal 686 2 (2008)
Brescia, M. et al. ‘A Catalogue of Photometric Redshifts for the SDSS-DR9 Galaxies’ Astronomy & Astrophysics 568 (2014)
Carliles, S. et al. ‘Random Forests for Photometric Redshifts’ The Astrophysical Journal 712 1 (2010)
Clampin, M. et al. ‘The Advanced Camera for Surveys’ in UV, Optical, and IR Space Telescopes and Instruments (International Society for Optics and Photonics; 2000)
Dunlop, J. S. et al. ‘PRIMER: Public Release IMaging for Extragalactic Research’ JWST Proposal Cycle 1 (2021)
Dunlop, J. S. ‘Observing the First Galaxies’ in The First Galaxies: Theoretical Predictions and Observational Clues (Springer Berlin Heidelberg; 2012)
Eisenstein, D. J. et al. ‘Overview of the JWST Advanced Deep Extragalactic Survey (JADES)’ arXiv e-prints (2023)
Hainline, K. N. et al. ‘The Cosmos in Its Infancy: JADES Galaxy Candidates at Z > 8 in GOODS-S and GOODS-N’ The Astrophysical Journal 964 1 (2024)
Hildebrandt, H. et al. ‘PHAT: PHoto-Z Accuracy Testing’ Astronomy & Astrophysics 523 (2010)
Hofmann, T. et al. ‘Kernel Methods in Machine Learning’ The Annals of Statistics 36 3 (2008)
Jones, E. and Singal, J. ‘Tests of Catastrophic Outlier Prediction in Empirical Photometric Redshift Estimation With Redshift Probability Distributions’ Publications of the Astronomical Society of the Pacific 132 1008 (2020)
McElwain, M. W. et al. ‘The James Webb Space Telescope Mission: Optical Telescope Element Design, Development, and Performance’ Publications of the Astronomical Society of the Pacific 135 1047 (2023)
Reis, R. R. R. et al. ‘The Sloan Digital Sky Survey Co-add: A Galaxy Photometric Redshift Catalog’ The Astrophysical Journal 747 1 (2012)
Rieke, M. J. et al. ‘JADES Initial Data Release for the Hubble Ultra Deep Field: Revealing the Faint Infrared Sky With Deep JWST NIRCam Imaging’ arXiv e-prints (2023)
Rieke, M. J. et al. ‘Performance of NIRCam on JWST in Flight’ Publications of the Astronomical Society of the Pacific 135 1044 (2023)
Shahriari, B. ‘Practical Bayesian Optimization With Application to Tuning Machine Learning Algorithms’ (2016)
Snoek, J. et al. ‘Practical Bayesian Optimization of Machine Learning Algorithms’ arXiv e-prints (2012)
Stone, M. ‘Cross-Validatory Choice and Assessment of Statistical Predictions’ Journal of the Royal Statistical Society: Series B (Methodological) 36 2 (1974)
Tarrío, P. and Zarattini, S. ‘Photometric Redshifts for the Pan-STARRS1 Survey’ Astronomy & Astrophysics 642 (2020)
Wang, B. et al. ‘UNCOVER: Illuminating the Early Universe–JWST/NIRSpec Confirmation of Z > 12 Galaxies’ The Astrophysical Journal Letters 957 2 (2023)
Wang, J. ‘Eye Beyond the Sky’ (Springer Nature Singapore; 2024)
Zhang, Y. and Zhao, Y. ‘Astronomy in the Big Data Era’ Data Science Journal 14 (2015)
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Julie Kalná, Ryan Begley, Callum Donnan
This work is licensed under a Creative Commons Attribution 4.0 International License.