Inefficient practice of flint heat treatment at Hasankeyf Höyük: An anti-functional view

  • Osamu Maeda University of Tsukuba
Keywords: heat treatment; flint; experimental study; inefficient technology; Neolithic

Abstract


This paper investigates the heat treatment of flint practiced at the Neolithic site of Hasankeyf Höyük in southeast Turkey. It does not involve petrographic or geochemical analysis to identify the physical and chemical evidence of heat treatment but aims to understand cultural aspects of the use of ancient lithic technology, using heat treatment as a case study. Heat treatment is a lithic production technique in which siliceous rocks are heated by controlled fire in order to improve their flaking quality. Archaeological evidence of heat treatment is seen all over the world, and numerous studies have contributed to the better understanding of this technique. However, what is particularly intriguing in the case of Hasankeyf Höyük is that there are many flint artefacts which were apparently overheated and unusable due to the frequent failure in achieving successful heat treatment. On the other hand, experimental studies using an electrical furnace and open fire show that once the appropriate heating time and temperature are learnt, the heat treatment of local flint at Hasankeyf Höyük is an easy process and does not require high technical skill. It is therefore suggested that heat treatment at this site was exercised along non-economic principles by people who were not very keen on improving technological efficiency, even when they could have easily done so.

Author Biography

Osamu Maeda, University of Tsukuba

Faculty of Humanities and Social Sciences
Institute for Comparative Research in Human and Social Sciences (ICR)
University of Tsukuba
Tennodai 1-1-1
Ibaraki, 305-8571
Japan

Institute of Archaeology
University College of London
U.K.

References

Beauchamp, E.K., & Purdy, B.A. 1986, Decrease in fracture toughness of chert by heat treatment. Journal of Materials Science, 21: 1963-1966. doi:10.1007/BF00547934
Bleed, P., & Meier, M. 1980, An objective test of the effects of heat treatment of flakeable stone. American Antiquity, 45: 502. doi:10.2307/279865
Brown, K.S., Marean, C.W., Herries, A.I.R., Jacobs, Z., Tribolo, C., Braun, B., Roberts, D.L., Meyer, M.C., & Bernatchez, J. 2009, Fire as an engineering tool of early modern humans. Science, 325: 859-862. doi:10.1126/science.1175441
Crabtree, D.E., & Butler, B.R. 1964, Notes on experiments in flint knapping: 1. Heat treatment of silica materials. Tebiwa, 7: 1-6.
Delage, C., & Sunseri, J. 2004, Lithic heat treatment in the Late Epipalaeolithic of southern Levant: Critical review of the evidence. Lithic Technology, 29: 161-173. doi:10.1080/01977261.2004.11721018
Domanski, M., & Webb, J.A. 1992, Effect of heat treatment on siliceous rocks used in prehistoric lithic technology. Journal of Archaeological Science, 19: 601-614. doi:10.1016/0305-4403(92)90031-W
Domanski, M., & Webb, J. 2007, A review of heat treatment research. Lithic Technology, 32: 153-194. doi:10.1080/01977261.2007.11721052
Domanski, M., Webb, J.A., & Boland, J. 1994, Mechanical properties of stone artefact materials and the effect of heat treatment. Archaeometry, 36: 177-177. doi:10.1111/j.1475-4754.1994.tb00963.x
Edwards, P.C., Edwards, W.I. 1990, Heat Treatment of Chert in the Natufian Period. Mediterranean Archaeology, 3: 1-5. URL: http://www.jstor.org/stable/24666567
Flenniken, J.J., & Garrison, E.G. 1975, Thermally altered novaculite and stone tool manufacturing techniques. Journal of Field Archaeology, 2(1-2): 125-131. doi:10.2307/529623
Flenniken, J.J., & White, J.P. 1983, Heat treatment of siliceous rocks and its implications for Australian prehistory. Australian Aboriginal Studies, 1983(1): 43-48.
Griffiths, D.R., Bergman, C.A., Clayton, C.J., Ohnuma, K., Robins, G.V., & Seeley, N.J. 1987, Experimental investigation of the heat treatment of flint. In: The Human Uses of Flint and Chert: Proceedings of the Fourth International Flint Symposium, Held at Brighton Polytechnic, 10-15 April 1983 (Sieveking, G. de G., & Newcomer, M.H., Eds.), Cambridge University Press, Cambridge and New York: p. 43-52.
Hester, T.R. 1972, Ethnographic evidence for the thermal alteration of siliceous stone. Tebiwa, 15: 63-65.
Inizan, M.-L., Roche, H., & Tixier, J. 1976, Avantages d’ un traitement thermique pour la taille des roches siliceuses. Quaternaria, 19: 1-18.
Inizan, M.-L., & Tixier, J. 2000, L’émergence des arts du feu: le traitement thermique des roches siliceuses. Paléorient, 26(2): 23-36. doi:10.3406/paleo.2000.4707
Karul, N. 2011. Gusir Höyuk. In: The Neolithic in Turkey. New Excavations and New Research. The Tigris Basin (Özdoğan, M., Başgelen, N., & Kuniholm, P., Eds.), Archaeology & Art Publications, Istanbul: p.1-17.
Kozlowski, S.K., & Szymczak, K. 1992, Flint industry. In: Nemrik 9. Pre-pottery Neolithic site in Iraq, Vol. 2: House No 1/1 A/1 B. (Kozlowski, S.K., Ed.), Warsaw University Press, Warsaw: p. 43-79.
Lemonnier, P. 1992, Elements for an Anthropology of Technology. Museum of Anthropology, University of Michigan, Ann Arbor, 129 p.
Maeda, O. 2018, Lithic analysis and the transition to the Neolithic in the upper Tigris Valley: recent excavations at Hasankeyf Höyük. Antiquity, 93(361): 56-73. doi:10.15184/aqy.2017.219
Maeda O. 2017, Experimental implications for flint heat treatment at Hasankeyf Höyük. In: The exploitation of Raw Materials in Prehistory: Sourcing, Processing and Distribution (Pereira T., Terradas X., & Bicho, N., Eds.), Cambridge Scholars Publishing, Newcastle upon Tyne: p. 601-612.
Mandeville, M.D. 1973, A consideration of the thermal pretreatment of chert. Plains Anthropologist, 18: 177-202.
Mercieca, A., & Hiscock, P. 2008, Experimental insights into alternative strategies of lithic heat treatment. Journal of Archaeological Science, 35: 2634-2639. doi:10.1016/j.jas.2008.04.021
Miyake, Y., Maeda, O., Tanno, K., Hongo, H., & Gündem, C.Y. 2012, New excavations at Hasankeyf Höyük: a 10th millennium cal. BC site on the Upper Tigris, southeast Anatolia. Neo-Lithics, 1(12): 3-7.
Mourre, V., Villa, P., & Henshilwood, C.S. 2010, Early use of pressure flaking on lithic artifacts at Blombos Cave, South Africa. Science, 330: 659-662. doi:10.1126/science.1193769
Nadel, D. 1989, Flint heat treatment at the beginning of the Neolithic period in the Levant. Journal of the Israel Prehistoric Society, 22: 61-67.
Olausson, D.S. 1983, Experiments to investigate the effects of heat treatment on use-wear on flint tools. Proceedings of the Prehistoric Society, 49: 1-13. doi:10.1017/S0079497X00007933
Pinch, T.J. & Bijker, W.E. 1987, The Social construction of facts and artifacts: Or how the sociology of science and the sociology of technology might benefit each other. In: The Social Construction of Technological Systems (Bijker, W.E., Hughes, T.P., & Pinch, T.J., Eds.), MIT Press, Cambridge, MA: p. 17-50.
Purdy, B.A., & Brooks, H.K. 1971, Thermal alteration of silica minerals: an archeological approach. Science, 173: 322-325. doi:10.1126/science.173.3994.322
Robins, G.V., Seeley, N.J., McNeil, D.A.C., & Symons, M.C.R. 1978, Identification of ancient heat treatment in flint artefacts by ESR spectroscopy. Nature, 276: 703-704. doi:10.1038/276703a0
Rowney, M., & White, J.P. 1997, Detecting heat treatment on silcrete: experiments with methods. Journal of Archaeological Science, 24: 649-657 doi:10.1006/jasc.1996.0147
Schindler, D.L., Hatch, J.W., Hay, C.A., & Bradt, R.C. 1982, Aboriginal thermal alteration of a central Pennsylvania jasper: analytical and behavioral implications. American Antiquity, 47: 526-544. doi:10.2307/280233
Schmidt, P. 2014, What causes failure (overheating) during lithic heat treatment? Archaeological and Anthropological Sciences, 6: 107-112. doi:10.1007/s12520-013-0162-3
Schmidt, P., Léa, V., Sciau, P., & Fröhlich, F. 2013, Detecting and quantifying heat treatment of flint and other silica rocks: a new non-destructive method applied to heat-treated flint from the Neolithic Chassey culture, southern France: heat treatment of flint from the Chassey culture, southern France. Archaeometry, 55: 794-805. doi:10.1111/j.1475-4754.2012.00712.x
Schmidt, P., Masse, S., Laurent, G., Slodczyk, A., Le Bourhis, E., Perrenoud, C., Livage, J., & Fröhlich, F. 2012, Crystallographic and structural transformations of sedimentary chalcedony in flint upon heat treatment. Journal of Archaeological Science, 39: 135-144. doi:10.1016/j.jas.2011.09.012
Schmidt, P., Paris, C., & Bellot-Gurlet, L. 2015a, The investment in time needed for heat treatment of flint and chert. Archaeological and Anthropological Sciences, (2015). doi:10.1007/s12520-015-0259-y
Schmidt, P., Porraz, G., Bellot-Gurlet, L., February, E., Ligouis, B., Paris, C., Texier, P.-J., Parkington, J.E., Miller, C.E., Nickel, K.G., & Conard, N.J. 2015b, A previously undescribed organic residue sheds light on heat treatment in the Middle Stone Age. Journal of Human Evolution, 85: 22-34. doi:10.1016/j.jhevol.2015.05.001
Wadley, L., & Prinsloo, L.C. 2014, Experimental heat treatment of silcrete implies analogical reasoning in the Middle Stone Age. Journal of Human Evolution, 70: 49-60. doi:10.1016/j.jhevol.2013.11.003
Weiner, S., Brumfeld, V., Marder, O., & Barzilai, O. 2015, Heating of flint debitage from Upper Palaeolithic contexts at Manot Cave, Israel: changes in atomic organization due to heating using infrared spectroscopy. Journal of Archaeological Science, 54: 45-53. doi:10.1016/j.jas.2014.11.023
Weymouth, J.W., & Mandeville, M. 1975, An X-ray diffraction study of heat-treated chert and its archaeological implications. Archaeometry, 17: 61-67. doi:10.1111/j.1475-4754.1975.tb00115.x
Published
21-Dec-2021
How to Cite
Maeda, O. (2021). Inefficient practice of flint heat treatment at Hasankeyf Höyük: An anti-functional view. Journal of Lithic Studies, 8(3), 85-101. https://doi.org/10.2218/jls.3032
Section
Immersed in Lithics - Conference Papers