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Abstract:  

This paper presents the latest results of an ongoing research initiative into the role of lithic raw 

material variability in use-wear formation. The present study continues recent exploration of wear 

formation associated with working dry hide. The work presented here expands on a recently published 

study of two raw materials from the American Southwest (San Juan Fossiliferous Chert (SJF) and 

Yellow Silicified Wood (YSW)) by presenting the analysis of two additional materials (Morrison 

Undifferentiated Gray Chert (MUG) and Brushy Basin Silicified Siltstone (BB)) using the same 

quantitative measures from the previous study (area percent, density, average intensity). The methods 

used have broad geographic and temporal applicability, thus the potential for contributing to greater 

standardization in the quantification of archaeological use-wear.  
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1. Introduction 

Great strides have been made in improving visualization of use-wear at high 

magnifications, but still lacking is a truly systematic way of documenting quantitatively the 

physical evidence of tool using behaviour. Any such quantification must be able to generate 

data that can be readily reproduced and easily compared between different subsistence 

activities, raw material types, and various lengths of use. The methods developed as part of 

the larger initiative, and used again here, are geared towards the realization of these 

admittedly lofty but eminently worthwhile goals. 

While new interpretive ground needs to be broken, it is equally essential that intellectual 

continuity be maintained and promoted. The larger initiative is therefore designed to continue 

forging new methodological paths, while at the same time preserving and promoting the 

conceptual underpinnings that have guided the endeavor from the start. To these ends, this 

paper builds directly upon work previously carried out by the author (e.g. Lerner, 2007a, 

2007b, 2009; Lerner et al, 2007; Lerner et al, 2010; Lerner in press), while at the same time 

introducing new data and new insights. Picking up where the last study left off, what follows 

is equally a further examination of the effects of intra-raw material variability on use-wear 

http://dx.doi.org/10.2218/jls.v1i1.755
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formation, and a continuing effort to re-test and re-evaluate the methods and variables 

employed to ensure maximum reliability of results.  

In a recent paper by the author (Lerner, in press) an image analysis of experimentally 

generated wear on two raw materials (YSW and SJF) that were commonly used during the 

Late Archaic of northwestern New Mexico, corroborated earlier observations regarding 

differences in wear accrual on each of them (e.g. Lerner, 2007a, 2007b, 2009; Lerner et al 

2010), and for the first time demonstrated how this process varied between multiple flake 

scrapers made from each. The present paper examines the intra-material variability of two 

additional types of lithic raw material (BB and MUG) that are found in the same geographic 

region and were used during the same time period, and compares current results with those of 

the previous study (Lerner, in press).  

 

2. Use-wear research at the crossroads 

After nearly fifty years of formal use-wear research, following the publication of Sergei 

Semenov’s Prehistoric Technology (1964), this particular sub-discipline of archaeology has 

made many notable advances. It can even be argued that it has achieved a degree of 

methodological maturity. However, it currently stands at a sort of intellectual crossroads. 

While several analytical milestones have been achieved, one must ask ‘have we maximized 

the interpretive potential of these traces?’ Most use-wear analysts would say ‘no, there is still 

more we can learn from them.’ The question then becomes: ‘How do we access this still 

elusory information?’ One possible approach lies in methodological standardization.  

Many different tacks have been taken when it comes to use-wear analysis and while each 

has its own merits few have achieved truly broad applicability. Historically, experimental use-

wear studies have often had as their focus the characterization and differentiation of wear 

attributes as a function of specific kinds of tool use (e.g. Tringham et al, 1974; Keeley, 1980; 

Vaughan, 1985; Kimball et al, 1995). While progress in this regard continues, lithic analysts 

can only advance so far until the very nature of use-wear formation is better understood.  

Different theories have been put forward regarding how use-related wear actually forms. 

The first formal theory, the silica gel model, was introduced by Anderson (1980) and ascribed 

a primarily additive nature to use-wear formation. Subsequently, a more inclusive model, put 

forward by Mansur-Franchomme (1983a/b, 1986) and elaborated upon by Mansur (1997, 

1999), emphasized the centrality of raw material variability in determining patterns of use-

wear accrual. The present study then serves to further improve our understanding of use-wear 

formation and demonstrate how a deeper appreciation of the underlying processes has the 

potential to significantly enhance our interpretations of these microscopic traces.  

Perhaps one of the most-often cited yet least understood variables are the very materials 

from which stone tools are made. Any archaeologist that has dealt with lithic technology can 

tell you that no two kinds of stone are created equal. Despite this widely acknowledged 

reality, and the fact that use-wear analysis has been applied to tools made from a wide range 

of lithic raw materials, surprisingly little direct quantitative attention has been paid to how 

this variability influences the formation of use-related wear (e.g. Goodman, 1944; Greiser and 

Sheets, 1979; McDevitt, 1994; Stemp and Stemp, 2003). The larger initiative was therefore 

undertaken in an effort to address this issue and help build a more secure analytical 

foundation for the behavioural and cultural interpretation of archaeological use-wear 

evidence. The results of the initiative so far have shown that differences in use-wear accrual 

rates as a function of raw material variability can be reliably measured. This introduces the 

possibility of using this kind of data as a basis for assessing wear traces in new and exciting 

ways, such as evaluating the intensity of tool use in the archaeological record and how it may 

have changed over time and space. 



H.J. Lerner 167 

 

Journal of Lithic Studies (2014) vol.1, nr. 1, p. 165-186 doi:10.2218/jls.v1i1.755 

Each stage of the larger initiative is designed as a logical progression from previous 

installments. The first installments demonstrated quantitatively that different types of stone 

accrue wear at different rates. A more recent contribution (Lerner, in press) was based on the 

premise that the heterogeneous nature of most lithic materials suggests there may also be 

significant physical differences between different flakes of the same stone and therefore in 

how wear forms on each one. In the same vein the present study expands upon that paper by 

analyzing two further types of stone (BB and MUG) and comparing the results from both 

investigations. 

 

3. Background of the present study  

The first installment of the larger initiative strived to gain a basic understanding of the 

physical differences between raw materials and how they influence the way they wear down 

during use (Lerner, 2007a, 2007b, 2009; Lerner et al 2007, Lerner et al 2010.) The four 

materials that the initiative has focused on (YSW, SJF, BB, and MUG) were chosen as a 

representative cross-section of grain size and surface texture variability. Late Archaic of 

northwestern New Mexico with its diverse record of lithic resource exploitation inspired the 

choice of raw materials studied and the initiative in general. Although beyond the purview of 

the current study given its primary goal of assessing in a preliminary manner the role of raw 

material variability in the use-wear accrual process, the petrographic characterization (cf. 

Mansur, 1999) of each raw material studied is essential for more fully understanding how 

wear forms on their respective surfaces and therefore how we interpret the resulting traces. 

This line of inquiry will thus form the basis for future installments of the larger initiative.  

Experiments involving sequential stages of use were carried out to directly monitor wear 

formation through full image analysis of all tools after each stage of the experiment (Lerner 

2007a, 2007b, 2009). Highly sophisticated image analysis techniques have often been used as 

diagnostic tools in other fields of research, including medicine, engineering, and the natural 

sciences (e.g. Alilou and Kovalev, 2013; Cootes, 2000; Graham, 2000; Gramfort et al, 2014; 

Moreaud et al, 2009; Parr and Polzleitner, 2001; Rottensteiner, 2001; Xu et al, 2011; Yoo and 

Metaxas, 2005).  

Where it has seen relatively limited application is within the social sciences, particularly 

archaeology (e.g. Barceló Álvarez et al, 2008; Ibanez Estevez et al, 1999; González Urquijo 

and Ibáñez Estévez, 2003). Despite a long history of trying to quantify use-related wear, the 

field of use-wear analysis has only begun to realize the full potential of image-based 

techniques (e.g. Evans and Donahue, 2008; Evans and Macdonald, 2011; Dumont, 1982; 

Derndarsky and Ocklind, 2001; Grace, 1989, 1990; Grace, et al., 1985, 1987; Kimball, et al., 

1995; Stemp and Stemp, 2001, 2003; Stemp et al, 2010). 

Using Clemex Vision image analysis, differences in use-wear accrual rates proved not 

only measurable but also explicable, at least in part, in terms of each material’s particular 

surface properties. Not surprisingly, raw materials with greater surface hardness tended to be 

more resistant to wear; however, the results also showed that surface roughness had an equal, 

if not greater, influence on rates of use-wear accrual (Lerner, 2007a, 2007b, 2009; Lerner et 

al, 2010). Of course, the ways in which these attributes influence use-wear formation depends 

on many factors, including the nature and degree of force being applied during use and the 

kind of use to which a given tool is being put (cf. Mansur, 1999).  

Employing the same analytical technique, the present paper continues the intellectual 

journey of the initiative by expanding upon recent exploration into the intra-raw material 

variability of YSW and SJF (Lerner, in press) by investigating the other two raw materials, 

BB and MUG, and comparing the results from both studies. Improving and refining our 

understanding of intra-raw material variability is equally essential to understanding the 
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overall process of wear accrual as clarifying how different raw materials wear down during 

use. And, understanding the overall process of wear accrual in all its dimensions is an 

absolute prerequisite for reliably interpreting any microscopic evidence of tool use. 

 

4. Methodology   

4.1. Experimental design 

All lithic raw materials were collected in the field from secondary deposits throughout 

northwestern New Mexico. The nodules were taken to Dr. Michael Bisson of McGill 

University, a knapper with more than 30 years of experience, for production of the 

experimental tool assemblage. Dr. Bisson used hard-hammer percussion to detach flakes with 

at least one straight, acutely-angled edge suitable for scraping dry hide (Figures 1 and 2.) 

Each flake was bagged separately along with an index card bearing an illustration of the tool’s 

outline indicating which edge was used. All relevant information pertaining to each tool and 

its use was recorded on its corresponding card. 

Despite a growing body of literature, the very nature of archaeological use-wear 

formation remains poorly understood and the role of raw material variability in this process 

remains an even greater mystery. This, in part, may be due to some long-standing a priori 

assumptions about the distinctiveness of wear patterns associated with different kinds of 

activities, but the ever-present spectre of equifinality makes understanding the very nature of 

use-wear formation an inescapable necessity.  

 

 
Figure 1: The experimental BB flake scrapers with utilized edges indicated. 
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Figure 2: The experimental MUG flake scrapers with utilized edges indicated. 

 

In an effort to address both of these issues a sequential experimental design was used. 

Each flake scraper was used for 10 minutes then subjected to full cleaning and analysis. The 

cleaning protocols consisted of first washing each tool in warm water with mild detergent to 

remove all visible residues and debris. Each was then soaked for 30 min in a sonic bath of 

30% NaOH solution using a Brandon 1510 Sonic Cleaner. Finally, each tool was rinsed with 

distilled water to remove any contamination associated with their handling. A wash with 10% 

HCl solution was considered, but since in prehistory adhering residues likely acted as tertiary 

abrasive agents the decision was made to omit this step to maximize the relevancy of results 

for future comparison to archaeological data. 

The tools were then used for another 20 minutes, subjected to another round of cleaning 

and analysis, used for a further 30 minutes then cleaned and analyzed one again. This process 

resulted in each tool being used for a total of 60 minutes. All flake scrapers were used in 

exactly the same manner throughout to ensure consistency of activity performance. Each tool 

was held at a 45 degree angle to the hide and used with consistent stroke lengths of 6 to 8 

inches and a constant stroke rate of one per second. All use-motion was uni-directional with 

the tool being placed initially away from and then dragged towards the experimenter. 

A group of nine students from Université Laval helped carry out the experiments. The 

lack of occupational specialization during the Late Archaic of northwestern New Mexico, the 

multi-stage nature of the experimental program, and the large number of replicated tools all 

lead to the decision to involve several experimenters in the study. Detailed instructions were 

given to all participants prior to starting the experiments and activity performance was closely 

monitored by the author throughout the experimental program. 

The ungulate hide was secured to plywood to ensure it would remain immobile while 

being worked (Figure 3). The experiment was not designed to replicate prehistoric hide 
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working in detail as the priority was to further clarify the nature of wear accrual as a function 

of raw material variability rather than fully prepare a hide. Once the wear accrual process is 

more clearly understood then experiments designed to emulate more precisely the prehistoric 

preparation of animal hides will be undertaken. The experimental flake scrapers were made as 

unretouched hand-held tools, much as they were during the Late Archaic of northwestern 

New Mexico. 

 

 
Figure 3: Experimenters scraping the dry ungulate hide. 

 

The analytical technology used here is the same as in previous installments of the larger 

initiative (e.g. Lerner, 2007a, 2007b, 2009), the sole exception being a switch from scanning 

electron microscopy (SEM) to optical light microscopy (OLM). This change was made to 

determine if the methods being developed are equally effective when used with a less 

expensive and more readily available form of analytical microscopy. 

After each stage of the experiment each tool was examined using a Zeiss Axioscop 2 Mat 

upright metallographic incident light microscope. All examinations and microphotography 

were conducted at 100x magnification to provide a wider field of view and therefore a greater 

amount of surface area per image to sample with the Clemex processing frame in an effort to 

maximize both data collection and the reliability of results. A single level of magnification 

was also used to facilitate detailed and direct comparisons between all tools and all stages of 

the experiment. Again, the present aim is focused on identifying any basic patterns of use-

wear accrual directly attributable to raw material variability. Higher magnifications will be 

used in future installments of the larger initiative to both further test the validity of current 

findings and to expand our understanding of the myriad complexities of the use-wear 

formation process.  
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All photomicrographs were taken with a Nikon E4500 CoolPix camera using an f-stop of 

f/3.7, an exposure time of 1/8 of a second, an ISO speed of ISO-112, a focal length of 8 mm, 

and a maximum aperture of 2.8. The Zeiss’s light source was oriented perpendicularly (at 90 

degrees) to each tool surface. Brightness was controlled using an integrated dial on the Zeiss 

that adjusts beam intensity from 10 to 100 Watts. A moderate setting of 60 Watts was used to 

examine and photograph all experimental tools. All of the camera and light source settings 

were kept constant to avoid any variability that changing them might introduce. 

Once the examination of each scraper was complete multiple photomicrographs were 

taken of each tool surface to fully document all visible traces of use. The number of images 

recorded for each tool reflects the extent of wear it exhibited; the more extensive the wear the 

greater the number of images. These images were then imported into the Clemex Vision 

image analysis software package for quantitative analysis.  

 

4.2. The variables and their measurement 

The Clemex processing frame (Figure 4) was again used to record the same variables as 

in the previous study (Lerner, in press). Among these variables, the first, area percent, is 

simply the percentage of the total area within the processing frame that exhibits physical 

evidence of wear. The second, density, is the number of objects within the processing frame 

that depict use-related wear divided by the total area of the processing frame. An object in any 

image, as defined by Clemex, is either an isolated pixel if it is not in direct contact with any 

other pixel within the same bitplane or as being composed of two or more pixels within the 

same bitplane if these pixels are in direct horizontal, vertical or diagonal contact with each 

other, following the basic principles of stereology. 

 

 
Figure 4: The Clemex processing frame. 

 

Although the recorded densities are very low, this should not be taken as an indication of 

limited wear. As wear develops the more area it covers, and the more inter-connected the 
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pixels become that depict such wear (Figure 5). Density values are therefore numerically low 

due to the typically small number of discrete objects recognized by Clemex as part of how it 

calculates this variable. Thus, their significance lies in how they change from one stage of the 

experiment to the next and in differences between individual tools rather than in their absolute 

values. 

 

 
Figure 5: An illustration of how Clemex records the density of objects within the processing frame. 

  

Finally, average intensity, is the sum of individual gray values (1 to 256 in a grayscale 

image) for all pixels associated with wear divided by the total number of pixels within the 

processing frame. Average intensity is measured on a scale from 0 to 100, where 0 indicates 

the pixels in question are pure black and 100 indicates the pixels are pure white. All shades of 

gray, hence all levels of light reflectivity, fall somewhere in between. 

Visible wear was digitally highlighted relative to the surrounding tool surface through the 

use of histogram-based thresholding. Thresholding or image segmentation was used to 

differentiate pixels associated with use-related wear from pixels that denote unworn portions 

of a tool’s surface. The threshold histograms in Clemex are based on individual pixel gray 

values that range from 0 (black) to 255 (white) and together comprise the full spectrum of a 

standard 256 grayscale image. Each bar in the histogram represents a range of four 

consecutive pixel gray values (e.g. 0-3, 4-7, etc.).  

As a result, the bars representing pixel gray values closer to 255 (shades approaching 

white) denoting points exhibiting greater light reflectivity or wear can be easily delineated 

from the rest of the histogram via manually adjustable linear (intensity) and radial (shade) 

scales within the histogram dialog box (Figure 6). Thresholding thus offers a less subjective 

way of enhancing visible wear in original photomicrographs while retaining all the relevant 

textural detail of each surface. This fosters more consistent and reliable measurement of 

attributes and thus greater comparability of results between images. The highlighted pixels 

were then assigned to their own layer or bitplane within the original image, in this case 

denoted on screen by the color red. 

The processing frame was used to collect data from multiple surface samples of 

highlighted wear along the entire length of each utilized edge as a basis for further 

quantitative analysis (Figure 7). The user can adjust manually the dimensions of the 

processing frame and therefore the size of each surface sample. A processing frame 

measuring 100 x 100 pixels (where 1 pixel measures 1x1 
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samples on all tools. Three separate measurements were taken from each surface sample: area 

percent, density and average intensity. A minimum of five surface samples, but typically 

twice as many or more, were taken from each tool to generate representative mean values for 

each variable. It was only on tools that exhibited very slow rates of wear accrual where as few 

as five surface samples were taken. 

 

 
Figure 6: The Thresholding dialog box within Clemex. 

 

Based on the resulting data a series of scatter plots were generated to serve three 

purposes. First, to re-assess the inter-raw material patterning observed during earlier 

installments of the larger initiative. Second, to identify any trends in use-wear accrual 

associated with intra-raw material variability specific to BB and MUG. And, finally, to see if 

any new light could be shed on the overall role of intra-raw material variability in use-wear 

accrual through comparisons between the data generated in this study and those from the last 

installment. 
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Figure 7: Processing frame surface sampling strategy. 

 

 

5. Results 

The most recent installment of the larger initiative (Lerner, in press) not only confirmed 

the general patterns of inter-raw material wear accrual documented previously for YSW and 

SJF (e.g. Lerner, 2007a, 2007b, 2009, 2010), but also revealed some rather telling trends in 

terms of intra-raw material patterns of wear formation. It showed that the YSW flake scrapers 

tended to be more variable in terms of how wear accrued on their surfaces, while the SJF 

flake scrapers exhibited more consistent patterns of wear development (Lerner, in press). 

The present experiment with BB and MUG provided some interesting insights into the 

behaviour of these particular materials and these findings helped to shed some further light 

onto the broader relationship between intra-raw material variability and use-wear accrual (see 

Figure 8). As in the last study all variables are considered in terms of both range and percent 

difference between minimum and maximum mean values, the last being simply the range 

between the minimum and maximum values divided by the minimum value. As will be 

demonstrated below, it is as much, if not more so, the change in variable values from one 

stage of the experiment to the next as the values themselves that offer the greatest insights 

into intra-raw material patterns of wear accrual. 

Summary data are provided in Tables 1 and 2. The mean area percent of wear for BB 

after 10 minutes of use ranged from a minimum of 3.47% to a maximum of 20.09%, from 

2.03% to 8.49% after 30 minutes, and from 3.59% to 8.12% after 60 minutes of use. The 

anomalously high maximum mean value after 10 minutes of use is associated with BB Tool 

#1 and may be attributable to a particularly low surface hardness and therefore more rapid rate 

of wear accrual for this particular scraper (cf. Lerner et al, 2007). Apart from this, the values 

are generally consistent and exhibit a progressive decrease in percent difference through all 

three stages of the experiment from 479% through 318.2% to finally 126.2%. 
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Figure 8: The experimental MUG tools after scraping dry ungulate hide for 30 minutes. 

 

The mean density of wear for BB ranged from a minimum of 0.0012 to a maximum of 

0.0069 after 10 minutes, from 0.0028 to 0.0179 after 30 minutes, and from 0.0058 to 0.0111 

after 60 minutes of use. The percent difference for mean density was 475% after 10 minutes, 

increasing to 539.3% after 30 minutes, and dropping significantly to 91.4% after 60 minutes 

of use. The mean average intensity for BB ranged from a minimum of 43.87 to a maximum of 

57.89 after 10 minutes, from 38.08 to 43.27 after 30 minutes, and from 40.70 to 44.93 after 60 

minutes of use. The percent difference for mean average intensity also decreased 

progressively from 32% after 10 minutes to 13.6% after 30 minutes and finally to 10.4% after 

60 minutes of use. 

Although BB exhibited a certain amount of variability in how wear accrued on each 

scraper, there was some consistency in the results, particularly a tendency towards decreasing 

percent difference values as the experiment progressed. The MUG flake scrapers presented 
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somewhat different results. The mean area percent for the MUG tools ranged from a 

minimum of 6.28% to a maximum of 31.60% after 10 minutes, from 19.22% to 32.43% after 

30 minutes, and from 24.90% to 51.74% after 60 minutes of use. The percent difference for 

mean area percent was 403.2% after 10 minutes then dropped to 68.7% after 30 minutes and 

increased again to 107.8 % after 60 minutes of use. While the mean percent area values show 

a clear increase in wear accrual throughout the experiment, the percent differences suggest a 

considerable amount of variability in the rates at which the wear accrued. 

 
Table 1: Summary data for the experimental BB flake scrapers. 

  BB         

Area Percent (%) Min to Max Mean Std Dev Range % Difference 

10 min 3.47 to 20.09 7.22 9.02 16.62 479 

30 min  2.03 to 8.49 3.89 4.19 6.46 318.2 

60 min  3.59 to 8.12 6.89 5.97 4.53 126.2 

Density (No. of objects/Total Area)           

10 min 0.0012 to 0.0069 0.0033 0.0026 0.0057 475 

30 min 0.0028 to 0.0179 0.0059 0.0068 0.0151 539.3 

60 min 0.0058 to 0.0111 0.0082 0.0043 0.0053 91.4 

Average Intensity (pixel grey 
values/Total no. of pixels)           

10 min 43.87 to 57.89 51.01 5.61 14.02 32 

30 min 38.08 to 43.27 41.57 2.45 5.19 13.6 

60 min 40.70 to 44.93 42.74 1.68 4.23 10.4 

 
Table 2: Summary data for the experimental MUG scrapers. 

  MUG         

Area Percent (%) Min to Max Mean Std Dev Range % Difference 

10 min 6.28 to 31.60 21.00 13.74 25.32 403.2 

30 min  19.22 to 32.43 26.65 9.9 13.21 68.7 

60 min  24.90 to 51.74 35.18 12.91 26.84 107.8 

Density (No. of objects/Total Area)           

10 min 0.0018 to 0.0111 0.0076 0.0043 0.0093 516.7 

30 min 0.0096 to 0.0164 0.0122 0.0042 0.0068 70.8 

60 min 0.0045 to 0.0158 0.0116 0.0053 0.0113 251.1 

Average Intensity (pixel grey 
values/Total no. of pixels)           

10 min 51.26 to 57.11 54.99 4.05 5.85 11.4 

30 min 43.97 to 51.48 46.43 2.40 7.51 17.1 

60 min 42.93 to 46.91 44.24 2.38 3.98 9.3 

 

The mean density for MUG ranged from a minimum of 0.0018 to a maximum of 0.0111 

after 10 minutes, from 0.0096 to 0.0164 after 30 minutes, and from 0.0045 to 0.0158 after 60 

minutes of use. The percent difference was 516.7% after 10 minutes, dropping significantly to 

70.8% after 30 minutes, and rebounding to 251.1% after 60 minutes of use. The mean average 

intensity for the MUG flake scrapers ranged from a minimum of 51.26 to a maximum of 

57.11 after 10 minutes, from 43.97 to 51.48 after 30 minutes and finally from 42.93 to 46.91 

after 60 minutes of experimental use. The percent difference was 11.4% after 10 minutes, 

increased to 17.1% after 30 minutes, and dropped to 9.3% after 60 minutes of use. 
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The mean average intensity for the BB flake scrapers ranged from 43.87 to 57.89 after 10 

minutes, from 38.08 to 43.27 after 30 minutes, and from 40.70 to 44.93 after 60 minutes of 

use. The percent difference was 32.0% after 10 minutes, 13.6% after 30 minutes, and 10.4% 

after 60 minutes. The mean average intensity for the MUG scrapers ranged from 51.26 to 

57.11 after 10 minutes, from 43.97 to 51.48 after 30 minutes, and from 42.93 to 46.91 after 60 

minutes of use. The percent difference was 11.4% after 10 minutes, 17.1% after 30 minutes, 

and 9.3% after 60 minutes of use. For both materials there was a net decrease in mean average 

intensity over the course of the experiment, yet there are noticeable differences in the way 

those decreases were achieved.  

These findings may shed some further light on the respective roles of surface hardness 

and surface roughness in the wear accrual process. The insights gleaned here and their 

potential relationship to those gained from the previous study (Lerner, in press) will both be 

examined in greater detail below. 

 

6. Discussion 

Lithic use-wear analysts have spent a great deal of time trying to develop a reliable 

means of identifying different forms of use-related wear to aid in their reconstructions of 

prehistoric human adaptations. The reliability of such identifications, however, is directly 

dependent on a clear and thorough understanding of how wear forms. The rates of wear 

accrual as a function of raw material type recorded during earlier phases of the initiative were 

confirmed by the results presented above. This demonstrates a general consistency in the way 

each stone studied responds to working dry hide. However, this analysis also showed that 

within these broader patterns there exists some degree of variability in rates of wear accrual 

between multiple samples of each raw material. 

In the previous installment (Lerner, in press) the rate of use-wear accrual was examined 

on flake scrapers made from a silicified wood (YSW) and a fossiliferous chert (SJF). These 

two materials represent two ends of a spectrum of raw material variability based on individual 

grain size and resulting surface roughness or texture. YSW is cryptocrystalline and thus 

typically exhibits a very even or smooth microtopography. SJF, on the other hand, is 

characterized by a larger average grain size thus usually exhibits a great deal of surface 

irregularity, including multiple microfossil inclusions. The present paper offers the analysis of 

two additional materials (BB and MUG) that occupy intermediate locations within this same 

spectrum of lithic raw material variability. As such, in addition to considering the possible 

implications of current results, comparisons between present findings and those of the 

previous installment offer a unique opportunity to shed some additional light on the 

relationship between intra-raw material variability and patterns of use-wear accrual. 

As previously demonstrated, the rate at which wear forms on a given tool surface is a 

function of both its surface hardness and surface roughness (Lerner, 2007a, 2007b, 2009, 

2014; Lerner et al 2007; Lerner et al 2010). These results were corroborated by the data from 

the most recently published study (Lerner, in press) that indicate YSW flake scrapers not only 

accrued wear more rapidly but also exhibited greater variability in their rates of wear accrual 

than did SJF flake scrapers. A major factor in its faster rate of wear accrual, YSW’s lower 

surface roughness may allow for greater flexibility in how wear spreads across each tool 

surface.  

With SJF, its more irregular microtopography may serve to micro-morphologically 

restrict the progression of wear over its surface resulting in more consistent, if slower, 

patterns of wear accrual. Unlike YSW or SJF, BB is characterized by lower surface hardness 

but higher surface roughness values (Lerner et al 2007). MUG, on the other hand, has a 

smaller average grain size and a more even microtopography than either BB or SJF, and has 
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an intermediate surface hardness relative to harder YSW and SJF and softer BB (Lerner et al 

2007). Again, it is important to note that in order to more fully understand how the various 

surface properties of a given raw material interact to influence the rate of use-wear accrual, 

full petrographic analysis of each material is essential and, as such, will form the basis for 

future installments of the larger initiative. Considering the initial purpose of the initiative is to 

identify any larger-scale patterning in use-wear formation associated directly with raw 

material variability, the admittedly qualitative inferences described above can serve as a 

preliminary explanatory framework that will be used to guide the direction of future research.  

Further assessment of present data involved generating a series of area percent versus 

density scatter plots and corresponding R
2
 values (Figures 9 - 14). The R

2 
values for BB were 

consistently fairly high through all three stages of the experiment (after 10 mins R
2 

= 0.5650, 

after 30 mins R
2 

= 0.5628, and after 60 mins R
2 

= 0.3872) and higher than those for MUG 

after the first two stages indicating a strong positive correlation between these two variables 

for BB and therefore a more consistent pattern of wear accrual across all scrapers made from 

this material. The R
2
 values for MUG tended to be lower than those for BB except after the 

final stage of the experiment (after 10 mins R
2 

= 0.4606, after 30 mins R
2 

= 0.0968, and after 

60 mins R
2 
= 0.8533), demonstrating greater variability in patterns of wear accrual. 

 

 
Figure 9: Area Percent vs. Density of wear for BB after 10 minutes. 

 

 
Figure 10: Area Percent vs. Density of wear for BB after 30 minutes. 
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Figure 11: Area Percent vs. Density of wear for BB after 60 minutes. 

 

 
Figure 12: Area Percent vs. Density of wear for MUG after 10 minutes. 

 

 
Figure 13: Area Percent vs. Density of wear for MUG after 30 minutes. 
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Figure 14: Area Percent vs. Density of wear for MUG after 60 minutes. 

 

The much higher R
2
 for MUG after 60 minutes suggests the possibility that the 

combination of relatively low surface hardness and roughness (Lerner et al, 2007) may allow 

for a more rapid progression of wear into lower micro-topographic elevations or valleys 

resulting in a shift from initially more variable patterns of wear formation towards a more 

uniform pattern of wear propagation. Overall, the data presented here suggest that the more 

wear is restricted to micro-topographic peaks the more positive the correlation between area 

percent and density. The more wear spreads into micro-topographic valleys the more negative 

the correlation becomes between area percent and density. 

Comparing these results to those from the previous study, R
2 

values for YSW (after 10 

mins R
2 

= 0.5326, after 30 mins R
2 

= 0.2244, and after 60 mins R
2 

= 0.0380) exhibited the 

greatest variability of all four raw materials, while those for SJF (after 30 mins R
2 

= 0.8286, 

and after 60 mins R
2 

= 0.7313) were among both the highest and most consistent among all 

four materials (Lerner, in press). It should be noted that SJF Tool 5 was the only flake scraper 

made from this material to exhibit any visible wear after 10 minutes of use (Lerner, in press), 

and as such was excluded from any assessment of intra-raw material variability in use-wear 

formation. BB exhibited fairly consistent values through all three stages of the experiment, 

yet they were not among the highest and MUG exhibited considerable variability but was not 

as far ranging as YSW. This demonstrates quantitatively the intermediate nature of BB and 

MUG relative to YSW and SJF within the spectrum of raw material variability described 

above. More generally, the collective results of the two studies show that surface hardness and 

surface roughness can come together in a myriad of ways to dictate a range of patterns for 

use-wear accrual, both within and between recognized raw material types. 

Average intensity, the third variable recorded, actually presents a viable solution to a 

long-standing problem in use-wear research as it offers a reliable means of quantifying use-

wear brightness or reflectivity (Figures 15 and 16). In the case of scraping dry hide this 

variable measures specifically the dullness or ‘matte’ appearance typically associated with dry 

hide wear (e.g. Keeley, 1980; Vaughan, 1985; Kimball et al. 1995). The current data show an 

overall decrease in mean values for both BB and MUG by the end of the experiment. BB 

exhibited a progressive decrease through the first two stages followed by a very slight 

increase after the final stage of the experiment. MUG exhibited both a progressive decrease in 

and consistently higher values than BB. 

The previous study found that the range of values for YSW (16.50 after 10 minutes, 

10.55 after 30 minutes, and 8.21 after 60 minutes) were quite a bit more variable than those 

for SJF (6.79 after 30 minutes and 5.57 after 60 minutes) (Lerner in press). All four materials 
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exhibited overall decreases in the range of average intensity values over the full course of 

experimentation. With the exception of BB after 10 minutes, YSW was characterized by the 

widest ranges of values of all four raw materials. MUG, on the other hand, was the only 

material to exhibit an increase in the range of values, in this isolated instance between the first 

and second stages of the latest experiment. SJF was characterized by the least amount of 

change in the range of its average intensity values.  

 

 
Figure 15: Average Intensity of wear for BB after each stage of the experiment. 

 

 
Figure 16: Average Intensity of wear for MUG after each stage of the experiment. 

 

YSW had the highest mean average intensity values among all four raw materials (56.22 

to 50.20) (Lerner, in press), while MUG exhibited the most pronounced decrease in mean 

average intensity (54.99 after 10 minutes, 46.43 after 30 minutes, and 44.24 after 60 minutes). 

BB was the only material to exhibit an increase in mean average intensity even though it was 

a very minor one (from 41.47 after 30 minutes to 42.74 after 60 minutes), while SJF exhibited 

the least amount of change in mean average intensity (47.90 after to 44.58) (Lerner, in press). 

Overall, the average intensity data reflect a clear yet differential dulling of polish on each raw 

material, as well as some differences among each set of scrapers made from each type of tool 

stone.  

The natural heterogeneity of all lithic materials makes the use-wear analyst’s job a 

difficult one. A more detailed appreciation of how use-related wear actually forms on and 



182 H.J. Lerner 

 

Journal of Lithic Studies (2014) vol.1, nr. 1, p. 165-186 doi:10.2218/jls.v1i1.755 

spreads across a given tool surface, in particular the role raw material variability plays in this 

process, is key to unlocking the behavioural and ultimately cultural significance of these often 

ambiguous traces. The present study, and the initiative as a whole, is geared towards 

identifying important elements of wear development and contributing to the establishment of 

working guidelines for the interpretation of microscopic use-wear evidence.  

The general consistency of the broader patterns of wear accrual offers use-wear analysts 

some assurance as to the distinctiveness of use-wear patterns between different lithic raw 

materials, but the inherent variability within a given raw material type clearly indicates that 

we need to proceed cautiously when it comes to generating behavioural inferences based on 

these traces. Despite the complex nature of use-wear, this study and the larger initiative have 

further clarified both some of the variables and dynamics involved in its generation. This kind 

of clarification can only enhance our ability to make functional inferences about prehistoric 

lithic technologies and the adaptive behavior they represent. 

These traces, like archaeological records themselves, are fragmentary and incomplete. 

This reality demands that we continue to develop the means to maximize the amount of 

information we can glean from these traces. We can never generate definitive interpretations 

about past lifeways but we can provide the methodological underpinnings to ensure reliable 

and informative results that can shed greater light on the prehistoric past and the people that 

inhabited it. 

These methods should also be efficient in their application. They should be amenable to 

assessing large numbers of specimens in relatively short periods of time, as well as be cost-

effective to implement. They should also be accessible to as large a number of use-wear 

practitioners as possible to promote both greater standardization and comparability of results 

across the discipline. The Clemex image analysis program is relatively inexpensive and fairly 

straightforward to use. Although the technology is becoming relatively less expensive and 

somewhat more available, not everyone can gain access to an SEM or the financial resources 

to use one. The Clemex method’s demonstrated compatibility with OLM suggests that 

Clemex image analysis can be an efficient and effective way of systematically and objectively 

collecting larger volumes of data in a reasonable amount of time and at a supportable cost. 

 

7. Conclusions 

The initial installments of what will be a long-term initiative researching the role of lithic 

raw material variability in patterns of use-wear formation have demonstrated that there are 

notable differences in how different raw materials respond to the scraping of dry ungulate 

hide. While this is hardly a surprising result, these studies have shown that such differences 

can be reliably measured. This opens the door to the possibility of using the collected data as 

a basis for assessing intensity of tool use in the archaeological record. 

Developing this analytical ability is, and will continue to be, a long and painstaking 

process, involving the testing of a wider range of raw materials and the experimental 

performance of a greater array of subsistence-related activities. However, it is a very 

necessary process if we want to move past more than or less than assertions and begin 

offering legitimate estimates of how much more or how much less individual tools were used 

compared to each other. This will then pave the way for developing the means to evaluate 

changes in tool using behaviour and shifts in the importance of specific socio-economic 

activities through time and across the prehistoric landscape. This kind of information could 

provide a much needed corroborative line of evidence regarding the evolution of prehistoric 

economies, particularly when it comes to the often complex transitions from smaller-scale 

hunting and gathering to full-scale agriculture. 
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The broader goals of the larger initiative are indeed challenging and will require 

considerable time and effort to be achieved. However, it is believed that all that hard work has 

significant potential to yield significant methodological and interpretive dividends that will in 

time contribute towards our collective effort to resolve a number of issues that are, at present, 

still up for considerable debate. The approach described here can and should be part of a 

larger, more holistic methodological paradigm that incorporates multiple analytical techniques 

that generate several lines of evidence. Such an inclusive perspective would provide broader 

behavioural contexts for more fully evaluating the kind of quantitative data we are working to 

collect. This is the most promising way to assess the full significance of use-wear evidence as 

both behavioural and cultural phenomena.  

The results presented here and in previous installments may give the immediate 

impression of muddying the interpretive waters, and in a sense they do. However, shoring up 

the methodological foundation for generating reliable interpretations of often ambiguous 

microscopic evidence necessitates a stirring-up of the status quo to see where exactly all the 

analytical dust will settle and what bigger picture it may ultimately reveal. 

 

Acknowledgements 

I would also like to thank Dr. Jacques Chabot and the L'Équipe Archéometrie at the 

Laboratoires d' Archéologie, a part of the Centre Interuniversitaire d'Études sur les Lettres, les 

Arts et les Traditions (CELAT) at Université Laval, Quebéc (Quebéc), Canada for supporting 

this research. My thanks also go the reviewers for their many useful comments and 

suggestions that made this an even better paper. 

 

 

References 

Anderson, P.C. 1980, A testimony of prehistoric tasks: diagnostic residues on stone tool 

working edges. World Archaeology, 12(2): 181-194. 

doi:10.1080/00438243.1980.9979791 

Alilou, Mehdi and Kovalev, Vassili 2013, Automatic Object Detection and Segmentation of 

the Histocytology Images Using Reshapable Agents. Image Analysis and Stereology, 

32: 89-99. DOI: 10.5566/ias.v32.p89-99 

Barceló Álvarez, J. A., Pijoan-Lòpezm J., Toselli, A., and Vila I Mitjà, Assumpció 2008, 

Kinematics in use-wear traces: an attempt of characterization through image 

Digitalization. In: ‘Prehistoric Technology’ 40 Years Later: Functional Studies and the 

Russian Legacy, (Longo, L. and Skakun, N., Eds.), BAR International Series Vol. 1783, 

Archaeopress, Oxford, p. 63-71. 

Cootes T. 2000, Model-based Methods in Analysis of Biomedical Images. In: Image 

Processing and Analysis: a Practical Approach, (Baldock, R. and Graham, J., Eds.), 

Oxford University Press, Oxford, p. 223-248. 

Derndarsky M. and Ocklind G. 2001, Some Preliminary Observations on Subsurface Damage 

on Experimental and Archaeological Quartz Tools using CLSM and Dye. Journal of 

Archaeological Science, 28(11): 1149-1158. doi:10.1006/jasc.2000.064 

Dumont J.V. 1982, The Quantification of Microwear Traces: A New Use for Interferometry. 

World Archaeology 14(2): 206-217. Stable URL: http://www.jstor.org/stable/124276 

http://dx.doi.org/10.1080/00438243.1980.9979791
http://dx.doi.org/10.1006/jasc.2000.064
http://www.jstor.org/stable/124276


184 H.J. Lerner 

 

Journal of Lithic Studies (2014) vol.1, nr. 1, p. 165-186 doi:10.2218/jls.v1i1.755 

Evans A.A. and Donahue R.E. 2008, Laser scanning confocal microscopy: a potential 

technique for the study of lithic microwear. Journal of Archaeological Science, 35(8): 

2223–2230. doi:10.1016/j.jas.2008.02.006 

Evans, A.A., Macdonald, D. 2011, Using metrology in early prehistoric stone tool research: 

further work and a brief instrument comparison. Scanning 33(5): 294-303. 

doi:10.1002/sca.20272 

Goodman, Mary Ellen 1944, Physical Properties of Stone Tool Materials. American Antiquity 

9(4): 415-433. Stable URL: http://www.jstor.org/stable/275093 

González Urquijo, J. E. and Ibáñez Estévez, J. J. 2003, The quantification of use-wear polish 

using image analysis: First results. Journal of Archaeological Science 30(4): 481-489. 

doi:10.1006/jasc.2002.0855 

Grace R. 1989, Interpreting the function of Stone Tools: The Quantification and 

Computerization of Microwear Analysis, BAR International Series, Vol. 474, 

Archaeopress, Oxford, 255 p.  

Grace R. 1990, The limitations and applications of use-wear analysis. In: The Interpretive 

Possibilities of Microwear Analysis, (Graslund, B., Knutsson, H., Knutsson, K., 

Taffinder, J., Eds.) Societas Archaeologica Upsaliensis, Uppsala, Vol. 14, Sweden, p. 9-

14. 

Grace R., Graham I.D.G. and Newcomer M.H. 1985, The Quantification of Microwear 

Polishes. World Archaeology 17(1): 112-120. Stable 

URL: http://www.jstor.org/stable/124679 

Grace R., Graham I.D.G. and Newcomer M.H. 1987 The Mathematical Characterization of 

Wear Traces on Prehistoric Flint Tools. In: The Human Uses of Flint and Chert: Papers 

from the Fourth International Flint Symposium, (Sieveking, G. and Newcomer, M. H.) 

p. 63-69.  

Graham J. 2000, Pattern Recognition: Classification of Chromosomes. In: Image Processing 

and Analysis: a Practical Approach, (Baldock, R. and Graham, J., Eds.), Oxford 

University Press, Oxford, p. 111-152. 

Gramfort, A., Poupon, C., and Descoteaux, M. 2014, Denoising and Fast Diffusion Imaging 

with Physically Constrained Sparse Dictionary Learning. Medical Image Analysis, 

18(1): 36-39. doi:10.1016/j.media.2013.08.006 

Greiser, Sally T. and Payson D. Sheets 1979, Materials  as  a  Functional  Variable in Use-

Wear Studies.. In: Lithic Use Wear Analysis, (Hayden, B., Ed.), Studies in Archaeology 

Series, Academic Press, New York, p. 289-296. 

Kimball, L.R., Kimball, J.R. and Allen, P.E. 1995, Microwear polishes as viewed through the 

atomic force microscope. Lithic Technology, 20(1): 6-28. Stable 

URL: http://www.jstor.org/stable/23273157 

Ibáñez Estévez, J.J., González Urquijo, J.E., Peña-Chocarro, L., Zapata, L., Beugnier, V. 

1999, Harvesting without sickles: Neolithic examples from humid mountain areas. In: 

Ethno-archaeology and its transfers, (Beyries, S. and Pétrequin, P.), BAR International 

Series Vol. 983, Archaeopress, Oxford, p. 23-36. 

Laferty D. 2000, Image Analysis: Historical Perspective. In: Practical Guide to Image 

Analysis, ASM International: The Materials Information Society, American Society for 

Metals International, Materials Park, Ohio, p. 1-14. 

http://dx.doi.org/10.1016/j.jas.2008.02.006
http://dx.doi.org/10.1002/sca.20272
http://www.jstor.org/stable/275093
http://dx.doi.org/10.1006/jasc.2002.0855
http://www.jstor.org/stable/124679
http://dx.doi.org/10.1016/j.media.2013.08.006
http://www.jstor.org/stable/23273157


H.J. Lerner 185 

 

Journal of Lithic Studies (2014) vol.1, nr. 1, p. 165-186 doi:10.2218/jls.v1i1.755 

Lerner, H. 2007a, Digital Image Analysis and Use-wear Accrual as a Function of Raw 

Material: An Example from Northwestern New Mexico. Lithic Technology 32 (1): 51-

67. Stable URL: http://www.jstor.org/stable/23273643 

Lerner, H. 2007b, Lithic Raw Material Variability and the Reduction of Short-term Use 

Implements: An Example from Northwestern New Mexico, BAR International Series 

1688, Oxford, 170 p. 

Lerner, H. 2009, Lithic Raw Material Variability and Use-wear Accrual on Short-term Use 

Implements: An Example from Northwestern New Mexico. In:  Non-flint Raw Material 

Use in Prehistory: Old Prejudices and New Directions, (Sternke, F., Costa, L. J., and 

Eigeland, L., Eds.) Proceedings of the 15th Congress of the U.I.S.P.P. Archaeopress, 

Oxford, p. 81-91. 

Lerner, H. (in press) Intra-Raw Material Variability and Use-wear Formation: An 

Experimental Examination of a Fossiliferous Chert (SJF) and a Silicified Wood (YSW) 

from NW New Mexico using the Clemex Vision Processing Frame. Journal of 

Archaeological Science. doi:10.1016/j.jas.2013.10.030 

Lerner, H., Du X., Costopoulos A., Ostoja-Starzewski M. 2007, Lithic raw material physical 

properties and use-wear accrual. Journal of Archaeological Science 34(5): 711-722. 

doi:10.1016/j.jas.2006.07.009 

Lerner, H., Dytchkowskyi, D., and Nielsen, C. 2010, Raw material variability, use-wear 

accrual rates and addressing the ambiguity of some use-wear traces: an example from 

northwestern New Mexico. Rivista di Scienze Preistoriche 15: 309-329. 

Mansur M.E. 1997, Functional analysis of polished stone-tools: some considerations about the 

nature of polishing. In: Siliceous rocks and culture, (Bustillo, M. A. and Ramos Millán, 

A., Eds.). University de Granada, p. 465-486.  

Mansur M.E. 1999, Análisis funcional de instrumental lítico: problemas de formación y 

deformación de rastros de uso. In: Actas del XII Congreso Nacional de Arqueología 
Argentina, Universidad Nacional de La Plata, p. 355-366. 

Mansur-Franchomme, M. E. 1983a, Traces d'utilisation et technologie lithique: exemples de 

la Patagonie. PhD. Thesis, Bordeaux I Univ., Bordeaux. 516 p. 

Mansur-Franchomme, M. E. 1983b, Scanning electron microscopy of dry hide working tools: 

the role of abrasives and humidity in microwear polish formation. . Journal of 

Archaeological Science 10(3): 223-230. doi:10.1016/0305-4403(83)90005-5 

Mansur-Franchomme, M. E. 1986, Microscopie du matériel lithique préhistorique. Traces 

d’utilisation, altérations naturelles, accidentelles et technologiques. Cahiers du 

Quaternaire nº 9, Editions du CNRS. Bordeaux. 286 p. 

McDevitt, K. B. 1994, Results of Replicative Hide-Working Experiments: The Roles of Raw 

Material, Hide Condition, and Use-Wear Patterns in the Determination of Rhyolite 

Endscraper Function. Lithic Technology 19(2): 93-97. Stable 

URL: http://www.jstor.org/stable/23272946 

Moreaud, M., Revel, R., Jeulin, D., and Morard, V. 2009, Size of Boehmite Nanoparticles by 

TEM Images Analysis. Image Analysis and Stereology, 28: 187-193. 

Parr, G. and W. Polzleitner 2001, Fundamentals. In: Digital Image Analysis: Selected 

Techniques and Applications, edited by Walter G. Kropatsch and Horst Bischof, 

Springer, New York, p. 373-392.  

http://www.jstor.org/stable/23273643
http://dx.doi.org/10.1016/j.jas.2013.10.030
http://dx.doi.org/10.1016/j.jas.2006.07.009
http://dx.doi.org/10.1016/0305-4403(83)90005-5
http://www.jstor.org/stable/23272946


186 H.J. Lerner 

 

Journal of Lithic Studies (2014) vol.1, nr. 1, p. 165-186 doi:10.2218/jls.v1i1.755 

Rottensteiner, F. 2001, Precise Photogrammetric Measurement. In: Digital Image Analysis: 

Selected Techniques and Applications, edited by Walter G. Kropatsch and Horst 

Bischof, Springer, New York, p. 411-438. 

Semenov, S.A. 1964, Prehistoric Technology, Translated by M.W. Thompson, Cory, Adams 

and Mackay, London, 211 p. 

Stemp, W.J., Childs, B.E., Vionnet, S. 2010, Laser profilometry and length-scale analysis of 

stone tools: second series experiment results, Scanning 32(4): 233-243. 

doi:10.1002/sca.20200 

Stemp, W.J., Stemp, M. 2001, UBM laser profilometry and lithic use-wear analysis: a 

variable length scale investigation of surface topography. Journal of Archaeological 

Science 28(1): 81-88. doi:10.1006/jasc.2000.054 

Stemp, W.J., Stemp, M. 2003, Documenting stages of polish development on experimental 

stone tools: surface characterization by fractal geometry using UBM laser profilometry. 

Journal of Archaeological Science 30(3): 287-296. doi:10.1006/jasc.2002.0837 

Xu, J., Janowczyk, A., Chandran, S., and Madabhushi, A. 2011, A High-Throughput Active 

Contour Scheme for Segmentation of Histopathological Imagery. Medical Image 

Analysis, 15(6): 851-862. doi:10.1016/j.media.2011.04.00 

Yoo, T. S., and Metaxas, D. N. 2005, Open Science – Combining Open Data and Open 

Source Software: Medical Image Analysis with the Insight Toolkit. Medical Image 

Analysis, 9(6): 503-506. doi:10.1016/j.media.2005.04.008 

 

http://dx.doi.org/10.1002/sca.20200
http://dx.doi.org/10.1006/jasc.2000.054
http://dx.doi.org/10.1006/jasc.2002.0837
http://dx.doi.org/10.1016/j.media.2011.04.00
http://dx.doi.org/10.1016/j.media.2005.04.008

	Intra-raw material variability and use-wear accrual: A continuing exploration
	Harry J. Lerner
	Abstract:
	1. Introduction
	2. Use-wear research at the crossroads
	3. Background of the present study
	4. Methodology
	4.1. Experimental design
	4.2. The variables and their measurement

	5. Results
	6. Discussion
	7. Conclusions
	Acknowledgements
	References

