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Abstract:  

Despite the existence of intense research focused on the characterisation of macro traces derived 
from the use of the knapping on anvil technique, little attention has been dedicated to the detection of 
micro technical traces and residues on blanks and cores produced by means of this knapping 
technique. Macro technical traces derived from the knapping on anvil technique were detected on 
stone artefacts from the Gash Group’s lithic assemblage (middle III - early II millennium BCE) at 
Mahal Teglinos (K1), located in the modern region of Kassala in Eastern Sudan. An experimental 
programme, was developed to localise macro and micro manufacturing traces and residues from this 
knapping technique, using pebbles and small cobbles of quartz, quartzite and chert to create a 
reference collection for the interpretation of archaeological material. The methodology, adopted for 
this study, involved the combined use of several microscopes for traceological and residue analyses. 
Stereo and 3D digital microscopes have been utilised to characterise macro technical traces and locate 
possible residues. The elemental chemical composition of the residues has been characterised trough 
scanning electron microscopy (SEM) using energy dispersive X-ray (EDS) and element maps. The 
association of macro and micro traces (evidence of polishing and striations) identified on the 
experimental materials enabled the comparison and detection of similar technical traces on some 
archaeological material, as there are cases in which similar macro traces may result from direct 
percussion knapping. Our experiment demonstrated that macro traces are present on nearly all stone 
artefact replicas, while residues develop more easily on stone artefacts with specific characteristics of 
the butt and counter-butt of flakes and striking and resting platform of cores. Micro-technical traces 
confirm that blanks and cores were produced using the knapping on anvil technique when macro 
traces characteristics of this knapping technique are present on stone artefacts within a lithic 
assemblage, while residues indicate the lithology of the used hammerstone and anvil. 
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1. Introduction 
During the study of a set of stone artefacts from the lithic assemblage from Mahal 

Teglinos (K1), Eastern Sudan, macro technical traces derived from the knapping on anvil 
technique were observed on small cores, blanks and tools made from several raw materials. 
To test our hypothesis, we developed an experimental programme to characterise macro and 
micro-technical traces, as well as to locate and characterise the elemental composition of 
residues allowing for the detection of stone utilised for the hammerstones and anvils. Lastly, 
we tested our results to ensure that we had valid criteria for finding them in the archaeological 
record. 

The knapping on anvil technique was identified over a century ago (Bardon et al. 1906; 
Teit 1900: 182). It has since been given several definitions (Breuil & Lantier 1951: 71-72; 
Callahan 1987: 13; Crabtree 1972: 10-11; Hiscock 2015; Jeske 1992) but a general consensus 
is still to be reached. Breuil & Lantier (1951: 71-72) defined the “bipolar technique of 
percussion on an anvil” as a flaking technique involving the use of a hammerstone held by 
hand to strike a stone positioned upon an anvil. This technique may, owing to the use of using 
different knapping methods, generate stone artefacts showing several features creating 
confusion in their classification. Hiscock (2015) further argued that the “bipolar blows” are 
created by striking (with a hammerstone) a stone in line with the point at which it is in contact 
with the anvil. In cases involving a counterstrike, Mourre (1996a; 2004) distinguishes 
between axial knapping on an anvil (where the strike and the counterstrike are situated on the 
same axis) and the non-axial version (where the two impacts are not on the same axis). We 
observed in our experiment that there are different forms of blank detachments and features 
deriving from the same gesture. A few features are similar to those observed on blanks cause 
by the use of the hand held technique creating confusion in their classification. For this 
reason, in this paper, we use the Hiscock’s (2015) definition of “bipolar knapping” for stone 
artefacts showing impact point and counterstrike and “anvil-rested non-bipolar” for those 
showing only one of the different stigmas derived from this knapping technique. 

The earlier stone artefacts made using the knapping on anvil technique come from 
Lomekwi 3 in Kenya and dated to 3.3 Ma (Harmand et al. 2015). This knapping technique is 
chronologically and geographically widespread. It has been recognised as feature in African 
lithic assemblages (Barsky et al. 2011; Delagnes et al. 2023; Diez Martin et al. 2011; Eren et 
al. 2013; Gallotti et al. 2020; Garcia et al. 2013; Gurtov & Eren 2014; Kimbel et al. 1996; de 
la Peña & Wadley 2014; van Riet Lowe 1946; Soriano et al. 2010; Tabrett 2017; de la Torre 
2004). It was also attested at Pleistocene (Bourguignon et al. 2016; Collina et al. 2020; 
Grimaldi et al. 2020; de Lombera-Hermida et al. 2016; Mourre et al. 2010; Moyano et al. 
2011; de la Peña & Toscano 2013; Titton et al. 2021) and Holocene (Ballin 1999; Callahan 
1987; Driscoll 2010; Roda Gilabert et al. 2015) European sites. Recent studies documented its 
occurrence in Asia as well (Gao 2000; Li et. al 2017; de Lumley et al. 2005; Ma et al. 2020; 
Moore et al. 2009; Ryassert 2005; Wedage et al. 2019; Yang et al. 2016; Zaidner 2014). 
Lithic artefacts made from this knapping technique were found in Oceania (Flenniken & 
White 1985; Hayden 1979; Theden-Ringl 2017; White 1968) as well as North (Binford & 
Quimby 1963; Flenniken 1980; Goodyear 1993; Odell 2000; Shott 1999) and South America 
(Boëda et al. 2014; Curtoni 1996; Duarte-Talim 2015; Miller 1979; Prous & Alonso 1990). 
For an updated list of sites which have stone artefacts made with “knapping on anvil 
reduction” in their lithic assemblages, see Horta et al. (2022).  
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Ethnographic research carried out in Africa (Barham 1987; Gallagher 1977; Masao 1982; 
Weedman Arthur 2010), Asia (Kosambi 1967), Australia (Hayden 1979), New Guinea 
(Sillitoe & Hardy 2003; Watson 1995; White 1967), and in Northern (Bradbury 2010; Honea 
1965; Shott 1989) and Southern America (Curtoni 1996; Duarte-Talim 2015), has 
demonstrated the variability of stone artefacts made with the knapping on anvil technique and 
their suitability for the execution of different activities. For more ethnographic works, see 
Yeşilova et al. 2024.  

During the last decades, studies concerning the identification of macro technical traces 
on chert (Bietti et al. 2010; Cancellieri et al. 2001; Donnart et al. 2009; Faivre et al. 2010; 
Grimaldi et al. 2007; de la Peña 2015b), quartz (Pargeter & de la Peña 2017; de la Peña 
2015b), quartzite (Byrne et al. 2015; Yeşilova et al. 2024), trachydacite (Kuijt et al. 1995) 
and other lithotypes (Sánchez-Yustos et al. 2017) that were knapped on an anvil have been 
performed.  

Other studies have also focused on reduction strategies (Bialowarczuk 2015; Goodyear 
1993; Gurtov et al. 2015; Jeske & Lurie 1993; Kobayashi 1975; Leaf 1979; Li et al. 2017; 
Pargeter & Eren 2017; Pargeter et al. 2019; de la Peña & Wasley 2014) or dealt with the 
function of stone artefacts derived from the use of this knapping technique (Bader et al. 2015; 
Crovetto et al. 1994; Devriendt 2011; Flenniken 1980; Gibaja et al. 2007; Hayden 1980; 
Igreja & Porraz 2013; Jeske & Sterner-Miller 2015; Kolobova et al. 2021; Langejans 2012; 
LeBlanc 1992; Lucas & Hays 2004; de la Peña 2011; Shott 1999). 

Despite the existence of this research, it is, to our knowledge, rare that studies focus on 
characterising micro technical traces and residues produced by the anvil (Vergès & Ollé 
2011), hammerstones (Rots 2010a; 2010b; Touzé & Rots 2025) and on the effects of 
production processes on stone tools by retouching (Byrne et al. 2006) and backing (Fasser et 
al. 2024) them with retouchers made from different materials. Hammerstones smears were 
also mentioned by Keeley (1980: 20) and Mansur-Franchomme (1986: 158 & 214-215).  

 
1.1. The site of Mahal Teglinos 

Mahal Teglinos (K1) was first recognized in 1917 by John Winter Crowfoot (1928). The 
site is located at the northern end of the Jebel Taka, near the modern town of Kassala in 
eastern Sudan (Figure 1).  

The Italian Archaeological Expedition to the Sudan, Kassala (IAESK), directed by 
Rodolfo Fattovich, carried out systematic investigations from 1980 to 1995 (Coltorti et al. 
1984; Costantini et al. 1982; Cremaschi et al. 1986; Fattovich 1990; 1993; Fattovich et al. 
1994). The Italian Archaeological Expedition to the Eastern Sudan of the University of 
Naples “L’Orientale” (IAEES), resumed the archaeological investigation in 2010 (Manzo 
2017 and references cited therein; 2018; 2019). Mahal Teglinos was inhabited from the 4th 
millennium BCE up to the 1st millennium CE. The main occupation phase (Figure 2a), dating 
to the Gash Group period (ca mid-3rd - early 2nd millennium BCE), is characterised by two 
living areas (Figure 2b) and two cemeteries marked by monolithic stelae (Fattovich 1987; 
1989; Manzo 2006) in the central and Eastern part of the site (Figure 2c).  

Despite stone tools being one of the most recovered archaeological artefacts, few studies 
have been performed so far about micro (Costantini et al. 1982; Phillipson 2017; Usai 1995; 
2002) and macro lithic tools (Rega 2020a; 2020b; Rega et al. 2021). Recent 
geoarchaeological investigation have nevertheless added relevant information about the 
geological history of the site (Costanzo et al. 2021; 2022). For a better understanding of the 
role of the site in the Eastern Sudan and relations with other areas of the Nile Valley and Horn 
of Africa see Manzo (2012; 2017; 2020). 
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Figure 1. Location of Mahal Teglinos, eastern Sudan. 

 

 
Figure 2. A) general view of Mahal Teglinos; b) living areas; c) particular of Eastern cemetery and stelae. 
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2. Materials and Methods 
2.1. Mahal Teglinos lithic artefacts 

The lithic sample comes from the Gash Group’s settlement and cemetery areas, 
investigated during the 1980s and 1990s. The samples comprises 209 stone artefacts 
representing approximately 2% of the overall Gash Group’s lithic assemblage. The sample 
includes cores (12.4%) and core fragments (1.9), blanks (34%) and blank fragments (12%), 
tools (27.3%) and tool fragments (11%) and chunks (1.4%). For core types across lithotypes, 
see Table 1 & Supplementary file 1: figures 1-3; for their average dimensions, see Table 2; 
and for knapping on anvil macro technical traces, see Figure 3.  

 
Table 1. Knapping methods detected on cores from Mahal Teglinos: a) knapping on anvil, b1) bipolar axial, b2) 
bipolar non-axial and c) anvil-rested non-bipolar. 
Lithotypes Type of cores Knapping technique Total 
  A  
  B1 B2 C  
Chert (n = 12) Two-platform cores - - 1 1 
 Exhausted one-platform cores 3 - - 3 
 Cores on flakes 5 1 - 6 
 Core fragments 2 - - 2 
Quartz (n = 14) One-platform cores - - 1 1 
 Multiple-platform cores 1 - - 1 
 Exhausted one-platform cores 4 - - 4 
 Casual cores 1 - 3 4 
 Cores on flakes 1 - 1 2 
 Core fragments 2 - - 2 
Chalcedony (n = 2) One platform micro-cores 1 - - 1 
 Two platforms micro-cores - - 1 1 
Agate (n = 1) Casual cores - - 1 1 
Basalt (n = 1) Casual cores - - 1 1 
Total  20 1 9 30 
%  66.7 3.3 30 100 

 
Table 2. Univariate statistic of dimensions of the cores from Mahal Teglinos. 
  Length (mm) Width (mm) Thickness (mm) Weight (gr) 
Core on flakes N 8 8 8 8 
 Min 19.6 15 7.2 2.4 
 Max 38.3 37.4 13.6 20.7 
 Mean 26.63 24.23 9.23 6.85 
 Stand. dev 6.3 7.37 2.14 6.14 
Other cores  N 18 18 18 18 
 Min 13.5 7.6 5.9 0.6 
 Max 38.4 61.8 78.2 227.1 
 Mean 24.9 27.48 22.51 27.62 
 Stand. dev 7.67 11.97 16.86 51.15 
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Figure 3. Quartz (a & f) and chert (i, l & o) bipolar axial core on flake (a) bipolar axial exhausted core (f, i & l) 
and anvil-rested non-bipolar two platforms core (o) from Mahal Teglinos showing different knapping on anvil 
macro technical traces: b & e) notching; c) cascade; d & g) crushing; h) crushing and overlapping macro and 
micro scars; j) overlapping micro scars; k) Hertzian cone; m) blunting and cascade; n) incipient Hertzian cones 
and cascade; p) notching and concentric partial Hertzian cone cracks and q) not overlapping macro and micro 
scars. The green dot indicates the first striking platform when a core has been rotated (o), whereas the red 
indicates the last striking platform. 
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Three un-knapped quartz pebbles measuring less than 40 mm in length (Supplementary 
file 1: figure 2a-c) were found in the western living area in 2019. For the description of 
technological attributes and macro technical traces of the cores, see Supplementary file 1: 
tables 1-18. Excluding the cores and core fragments, 43% of the lithic artefacts (Table 3) 
show knapping on anvil technique marks (Figure 4), whereas 11.2 % are hand-held products. 
The remaining 44.7% was classified as indeterminate because it was not possible to 
distinguish the knapping technique, and 1.1 % included formal tools made from natural rock 
fragments. 

 
Table 3. Knapping techniques detected on blanks and stone tools across artefact classes and lithotypes from 
Mahal Teglinos: a) knapping on anvil, b1) bipolar axial, b2) bipolar non-axial, c) anvil-rested non-bipolar, d) 
hand-held, e) indeterminate, f) natural fragment. The asterisk (*) indicates that a tool is made from a natural rock 
fragment. 
Lithotypes Artefact Class Knapping technique Total 
  A D E F  
  B1 B2 C     
Chert (n = 65) Flakes and fragments 3 1 12 11 5 - 32 
 Blades, bladelets and fragments - - 2 1 1 - 4 
 Backed pieces - - - - 2 - 2 
 Tools and fragments 1 - 7 1 15 - 24 
 Chunks - - - - 3 - 3 
Chalcedony (n = 51) Flakes and fragments 1 1 6 4 2 - 14 
 Blades, bladelets and fragments - - 2 - 2 - 4 
 Backed pieces and fragments - - 4 - - - 4 
 Tools and fragments - - 6 1 21 - 28 
 Indeterminate fragment 1 - - - - - 1 
Agate (n = 12) Flakes 1 - 3 1 1 - 6 
 Tools and fragments - - 1 - 5 - 6 
Quartz (n = 30) Flakes and fragments 7 3 8 1 6 - 25 
 Blades, bladelets and fragments - - 1 - - - 1 
 Tools and fragments - - 1 - 3 - 4 
Quartzite (n = 6) Flakes 1 - - - 2 - 3 
 Tools - - 2 - 1 - 3 
Basalt (n = 10) Flakes and fragments - - - - 3 - 3 
 Tools and fragments - - - - 6 1* 7 
Uncertain hornfels  Flakes - - - - 1 - 1 
(n = 2) Tools and fragments - - 1    1 
Siliceous rock (n = 1) Flake fragment - - 1 - - - 1 
Limestone (n = 1) Tools - - - - - 1* 1 
Obsidian (n = 1) Flake fragments - - - - 1 - 1 
Total  15 5 57 20 80 2 179 
%  8.4 2.8 31.8 11.2 44.7 1.1 100 
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Figure 4. Quartz (a & d), quartzite (h), chert (k, n & q) and chalcedony (s) flakes (a, d, h, k & n) and borers (q & 
s) from Mahal Teglinos showing different knapping on anvil technical macro traces: b, c & m) crushing; e & g) 
overlapping micro scars; f) sheared bulb; i & j) overlapping macro and micro scars; m) collapsed striking 
platform showing negative crushed bulb; o) macro scar; p) crushing and overlapping macro and micro scars; r) 
crushed flat bulb and t) diffuse Hertzian cone. 
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Lithic artefacts made with an undetectable knapping technique, because their retouching 
or use removed knapping macro technical traces on the proximal and distal parts include tools 
(n = 35), tool fragments (n = 13), backed pieces (n = 3) and backed piece fragments (n = 1). 
They also comprise complete blanks (n = 11), showing attributes that can be found with both 
knapping techniques. They include primary flakes (entame) with slightly convex and convex 
plain or linear cortical butts (Gallotti et al. 2020; Hayden 1980) or non-cortical plain butts 
with a flat profile, showing or not showing impact marks, and having non-axial termination 
(Supplementary file 2: figure 2a & b). Furthermore, indeterminate lithic artefacts include 
blank fragments missing the proximal or distal end (n = 13) and chunks (n = 3).  

Complete blanks (n = 71) include flakes (n = 67), bladelets (n = 2) and blades (n = 2). 
Among the blanks (Supplementary file 2: figure 1), “lemon slice” flakes (Bialowarczuk 2015: 
fig. 3-5) occur (n = 11) (Supplementary file 2: figure 2). 23.9% of the blanks show bipolar 
marks, and 35.2% show feature marks belonging to the knapping on an anvil, while 25.4% are 
hand-held, and 15.5% have been classified as indeterminate. For their technological attributes 
and attribute types, see Supplementary file 2: tables 1-22. The mean dimensions of the 
complete blanks do not differ significantly based on their knapping technique (Table 4).  

 
Table 4. Univariate statistics of the size of complete blanks from Mahal Teglinos. 
Blanks  Length (mm) Width (mm) Thickness (mm) Weight (gr) 
Bipolar axial &  N 17 17 17 17 
non-axial Min 12.7 11.8 3.4 1 
 Max 43.4 31.6 19.4 24.6 
 Mean 25.2 21.6 8.27 5.54 
 Stand. dev 8.43 5.66 4.19 5.97 
Anvil-rested  N 25 25 25 25 
non-bipolar Min 14.6 6.6 2.6 0.4 
 Max 33.7 30.4 13.9 8.6 
 Mean 22.1 19.2 6.61 2.7 
 Stand. dev 5.92 6.33 2.67 2.15 
Hand-held N 18 18 18 18 
 Min 12.8 12.2 2.9 0.3 
 Max 40.5 41.3 13.6 11.8 
 Mean 27.43 23.53 7.49 5.12 
 Stand. dev 8.14 8.42 2.86 3.69 
Indeterminate N 11 11 11 11 
 Min 11.7 6 3 0.2 
 Max 46 39.4 13.1 13.4 
 Mean 27 25.03 8.17 6.25 
 Stand. dev 8.93 9.64 3.19 4.25 

 
Stone tool types are listed in Figure 5. For their sizes, they may be classified as micro-

lithic tools, having an average length of 20.54 ± 12.74 mm. The average sizes of the complete 
intentionally knapped stone tools (Table 5a) decrease excluding a side scraper and a 
denticulate made from natural stone fragments (Table 5b).  
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Figure 5. Stone tool types from Mahal Teglinos. 

 
Table 5. Univariate statistics of complete tools from Mahal Teglinos. 
Complete tools  Length (mm) Width (mm) Thickness (mm) Weight (gr) 
A N 65 65 65 65 
 Min 9.4 5.8 2 0.1 
 Max 82.9 63.8 20.5 120.7 
 Mean 20.54 16.42 5.79 5.51 
 Stand. dev 12.74 10.84 3.14 18.6 
B N 63 63 63 63 
 Min 9.4 5.8 2 0.1 
 Max 41.5 31.6 15.3 16.1 
 Mean 18.65 14.92 5.41 2.29 
 Stand. dev 7.10 6.87 2.28 3.34 

 
2.2. Experimental knapping and data recording 

Chert pebbles and cobbles (Supplementary file 3: figure 1) were collected from the 
Gargano plain (Puglia), while chert nodules were collected from the Rotzo Formation 
(Veneto). Quartz and quartzite pebbles and cobbles, used as cores, and dolomite, quartz, 
sandstone, porphyritic rock and basalt cobbles, utilised as hammerstones and anvils 
(Supplementary file 3: figures 2 & 3) were sourced from the Mella River (Brescia), because 
the last field season at Mahal Teglinos was conducted in 2019 due to Covid restrictions and 
the political crisis in Sudan.  

One of the authors (D.C.) performed the experimental knapping using 30 quartz, 19 
quartzite and 23 chert pebbles and cobbles. Different phases of core reduction (removing 
flakes up to exhausted and split cores) were reached to have different core types, and blanks 
with at least one cutting edge, as observed in the Mahal Teglinos assemblage. Blows were 
struck at about 90 degrees. Pebbles or cobbles were vertically placed on the anvil following 
the length, width or thickness axis, the latter defined as “anvil-assisted” by Pargeter & 
Tweedie (2018), to collect variations in data depending on the position of the core 
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(Supplementary file 3: figure 4). We did not conduct tangential strikes, i.e., retouching on the 
anvil or oblique flaking. Seven cores (Exp. 2, 4, 5, 14, 20, 43 and 44) were rotated, generating 
two or three knapping axes. When a core shows multiple striking or resting platforms, only 
the last striking and resting platforms are described. This decision is based on the observation 
that, during the knapping process, detaching flakes may also remove the previous resting 
platform of the core (Supplementary file 4: figure 1g & figure 2d & e), thus preventing their 
description, as also seen on the archaeological cores (Supplementary file 2: figure 2e & f). A 
pebble (Exp. 47) and two cobbles (Exp. 49 and 60) were split into two and three chunks, 
which were then used as cores. The number of strikes for a flake detachment and where it 
came from was recorded. Each blank was put in a plastic bag. Its length, width, thickness, and 
weight were measured using sterile, powder-free gloves to avoid contamination from handling 
(Ollé et al. 2016; Pedergnana et al. 2016). Eighteen blanks have been hand-held knapped 
from two chert nodules with a prepared striking platform to compare the different types of 
macro and micro technical traces and the pattern of residues formation on their butts with the 
specimens made from the knapping on anvil technique. We also tested the efficacy of the 
hand-held percussion on three chert, a quartzite and a basalt small cobbles without preparing a 
striking platform using a quartzitic sandstone and a quartzite hammerstones (Supplementary 
file 3: table 1). 

The technological attributes and attribute types of products made from ten chert, ten 
quartz, and ten quartzite pebbles or cobbles were analysed, as shown in Table 6. For the 
characteristics of the analysed pebbles and cobbles, see Supplementary file 3: table 2. 

 
2.3. Experimental technical traces and residues characterisation 

Our protocol combined the use of several microscopes for characterizing residues, macro 
and micro technical traces. The selected experimental materials were analysed as follows: 

1) residue distribution and macro technical traces were recorded at low magnifications 
before their cleaning, using single images with Lupa Euromex stereomicroscope (8x-30x) and 
stitching technology of Hirox KH-8700 3D digital microscope (35-50x). To create panoramic 
images featuring the horizontal stitching of the Lupa Euromex stereomicroscope, the 
Composite Image Editor (CIE) or AutoStich software were employed; 

2) the elemental composition of residues was investigated using Energy-dispersive X-ray 
spectroscopy (EDS) through points of interest spectra and element distribution maps with 
scanning electron microscopes (SEM JEOL 6400 and environmental ESEM Fei Quanta 600 
both equipped with secondary electron Everhart-Thornley (ETD) and back-scattered electron 
(DualBSD) detectors). The SEM magnification was from 200x to 2500x; 

3) polishing traces and striations characterisation were performed using an optical ZEISS 
Axioscope A1 metallographic microscope equipped with Differential Interference Contrast, 
Nomarski prisms and magnification from 50x to 500x. Striations of three experimental pieces 
and one archaeological artefact were studied using the ESEM Fei Quanta 600. 

 The cleaning protocol followed the one established by previous studies (Ollé & Vergès 
2014; Pedergnana et al. 2016). Industrial pure acetone (99.9%) was used for 5 to 20 minutes 
before the EDS analysis to remove possible modern contamination (finger fat and human skin 
residues). Hydrogen peroxide (H202) at 92% was used after the EDS analysis and 
characterisation of the striation types to remove residues and to seek possible polishing traces 
left by contact with the hammerstone and anvil. The cleaning in an ultrasonic bath with H2O2 
lasted between 10 and 60 minutes depending on the strength of the bond between the residues 
and the stone artefacts’ surfaces (Byrne et al. 2006; Cnuts & Rots 2018). 
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Table 6. Technological attributes and attribute types recorded on experimental and archaeological knapping on 
anvil products. 
Technological Categories 1. Flake; 2. Flake fragment; 3. Blade; 4. Blade fragment; 5. Bladelet; 6. 

Bladelet fragment; 7 Core; 8. Shatter; 9. Chunk 
Originated core and blank 1. Bipolar axial; 2. Bipolar non-axial; 3. Anvil-rested non-bipolar; 4. Split 
Technological Attributes Attribute Type 
Cortex amount 1. Primary; 2. Secondary < 50%; 3. Secondary >50%; 4. Tertiary 
Scar direction 1. Unidirectional from striking platform; 2. Unidirectional from resting 

platform; 3. Opposite; 4. Orthogonal; 5. Convergent from striking or 
resting platform; 6. Opposite convergent; 7. Centripetal; 8. 
Multidirectional; 9. Indeterminate; 10. Absent 

Profile 1. Straight; 2. Slightly convex; 3. Convex; 4. Slightly concave; 5. 
Concave; 6. Slightly sinuous; 7. Sinuous; 8. Irregular; 9. Twisted; 10. 
Indeterminate (because broken) 

Shape 1. Sub-rectangular; 2. Rectangular; 3 Sub-square; 4. Square; 5. Sub-
ovate; 6. Ovate; 7. Sub-circular; 8. Circular; 9. Sub-triangular; 10. 
Triangular; 11. Irregular 

Termination 1. Axial; 2. Feather; 3. Step; 4. Hinge; 5. Plunge; 6. Broken 
Type of fracture 1. Siret; 2. Bending; 3. Transversal; 4. Uneven 
Cortex amount on core 
striking - resting platform 
and blank butt - counter-
butt  

1. Cortical; 2. Semi-cortical; 3. Non-cortical; 4. Indeterminate (broken 
butt or counter-butt) 

Morphological categories 
of the core striking - resting 
platform and blank butt - 
counter-butt 

1. Plain; 2. Linear; 3. Punctiform; 4. Winged; 5. Collapsed; 6. Broken 

Core striking - resting 
platform and blank butt - 
counter-butt delineations 

1. Flat; 2. Slightly convex; 3. Convex; 4. Slightly concave; 5. Concave; 6. 
Slightly sinuous; 7. Sinuous; 8. Irregular; 9. Indeterminate (broken butt 
or counter-butt) 

Macro traces on the core 
striking - resting platform 
and blank butt - counter-
butt 

1. Crushing; 2. Blunting; 3. Notching; 4. Incipient Hertzian cone; 5. 
Double incipient Hertzian cone; 6. Multiple incipient Hertzian cones; 7. 
Concentric partial Hertzian cone cracks; 8. Whitening; 9. Cracks; 10. 
Combination of macro traces; 11. Indeterminate (broken butt or 
counter-butt); 11. No signs 

Core and blank proximal 
(hammer strike) and distal 
bulb (counter-strike) types  

1. Flat; 2. Positive. 3. Positive prominent; 4. Positive diffuse; 5. Hinge; 
6. Hertzian cone; 7. Double Hertzian cone; 8. Multiple Hertzian cones; 
9. Crushed; 10. Sheared; 11. Double sheared; 12. Negative; 13. 
Negative crushed; 14. Negative spike-shaped; 15. Negative spike-
shaped crushed; 16. Dihedral; 17. Dihedral crushed; 18. Indeterminate 
(broken butt or counter-butt); 19. No bulb 

Macro traces on the ventral 
and dorsal surface of the 
proximal and distal end of 
cores and blanks  

1. Crushing; 2. Cascade; 3. Hertzian cone; 4. Double Hertzian cone; 5. 
Multiple Hertzian cones; 6. Whitening; 7. Macro scar; 8. Micro scar; 9. 
Not overlapping macro scars; 10. Not overlapping micro scars; 11. 
Overlapping macro scars; 12. Overlapping micro scars; 13. 
Combination of macro traces; 14. Indeterminate (broken butt or 
counter-butt); 15. No signs 

Residues and striations on 
striking - resting platform 
and butt - counter-butt  

1. Yes; 2. No 
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3. Results 
Bipolar axial (Hiscock 2015; Mourre 1996a; Vergès & Ollé 2011) and non-axial (de 

Lombera Hermida et al. 2016; Mourre 1996a; Vergès & Ollé 2011) cores and blanks (defined 
compression flakes in Cotterell & Kamminga (1987) as well as anvil-rested non-bipolar cores 
and blanks (Hiscock 2015) were produced during our experiment. Additionally, shatter, 
chunks, and debris occurred. Excluding debris, the experimental products are listed in 
Table 7.  

 
Table 7. Experimental products across artefact classes and lithotypes. 
 Chert Quartz Quartzite Total % 
Cores      
Bipolar axial 8 5 7 20 60.6 
Bipolar non-axial 4 2 2 8 24.2 
Anvil-rested non-bipolar 1 1 1 3 9.1 
Split - 2 - 2 6.1 
Total 13 10 10 33 100 
Blanks      
Bipolar axial flakes 24 16 15 55 21.2 
Bipolar non-axial flakes 21 7 6 31 13.1 
Anvil-rested non-bipolar flakes 68 8 16 94 35.5 
Bipolar axial flake fragments - 4 2 6 2.3 
Bipolar non-axial flake fragments 1 2 1 4 1.5 
Anvil-rested non-bipolar flake fragments 1 2 - 3 1.2 
Bipolar axial orange segments 3 4 7 14 5.4 
Bipolar non-axial orange segments - - 1 1 0.4 
Bipolar axial orange segment fragments - 2 1 3 1.2 
Bipolar axial “lemon slice” flakes 2 4 1 7 2.7 
Anvil-rested non-bipolar “lemon slice” flakes - 1 - 1 0.4 
Bipolar axial bladelets - 1 1 2 0.8 
Anvil-rested non-bipolar bladelets 9 2 7 18 6.9 
Anvil-rested non-bipolar bladelet fragments 1 - 2 3 1.2 
Bipolar axial blades 3 - 1 4 1.5 
Anvil-rested non-bipolar blades 3 - - 3 1.2 
Shatter 2 - 1 3 1.2 
Chunks 6 - - 6 2.3 
Total 144 53 62 259 100 

 
3.1. Cores attributes and macro technical traces  

In describing the striking and resting platform attributes, some of the terms used for the 
description of flakes were adopted. For core examples see Supplementary file 4: figures 1-3, 
and for their knapping position, size, weight and the number of knapped blanks see Table 8.  
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Table 8. Experimental cores: BP = bipolar; ARNB= anvil-rested non-bipolar; P = knapping position; 1 = vertical 
longitudinal; 2 = vertical transversal; 3 = anvil-assisted; TC = type of core generated; A = one striking platform; 
B = two striking platform; L = length; W = width; T = Thickness; We = weight; TB = total detached blanks. 
Core ID BP ARNB P TC L (mm) W (mm) T (mm) We (gr) TB 
Chert          
Exp. 44 Y N 1 & 2 B 42.2 49.0 18.0 28.1 5 
Exp. 47.1 Y N 3 A 38.9 31.6 26.2 35.0 10 
Exp. 47.2 Y N 3 A 35.8 45.1 20.5 38.6 3 
Exp. 49.1 Y N 3 A 32.8 29.8 24.3 25.4 13 
Exp. 50 Y N 2 A 38.4 29.1 17.3 23.0 10 
Exp. 55 Y N 3 A 26.9 45.2 30.7 29.5 24 
Exp. 59 Y N 2 A 35.4 33.8 21.2 21.3 20 
Exp. 60.1 Y N 2 A 40.8 38.9 17.9 29.1 6 
Exp. 60.2 Y N 2 A 28.2 31.1 14.2 11.6 10 
Exp. 60.3 Y N 2 A 41.4 71.0 24.1 78.2 3 
Exp. 61 Y N 1 A 26.5 23.2 10.4 6.4 8 
Exp. 62 N Y 1 A 33.8 41.2 14.2 16.3 13 
Exp. 71 Y N 1 A 26.0 22.8 18.1 10.5 21 
Quartz          
Exp. 9 Y N 2 A 38.3 32.4 23.5 24.8 7 
Exp. 13 Y N 1 A 42.0 30.6 19.9 33.0 2 
Exp. 14 Y N 1 & 3 B 22.4 22.7 18.9 11.8 8 
Exp. 15 Y N 3 A 32.6 37.8 28.3 49.9 3 
Exp. 17 Y N 1 A - - - - 3 
Exp. 20 Y N 1 & 3 B 31.7 25.7 20.1 24.0 10 
Exp. 30 Y N 1 A - - - - 3 
Exp. 31 N Y 1 A 36.1 21.1 10.8 7.1 4 
Exp. 35 Y N 2 A 42.6 41.6 16.6 37.1 9 
Exp. 67 Y N 1 A 55.6 29.9 21.0 39.0 4 
Quartzite          
Exp. 1 Y N 1 A 38.4 26.7 10.5 14.7 4 
Exp. 2 Y N 2, 3 & 1 A 22.0 20.5 12.3 8.3 9 
Exp. 3 Y N 1 A 38.2 32.6 15.2 27.9 2 
Exp. 4 Y N 2 & 1 A 44.6 32.0 21.6 24.6 4 
Exp. 5 N Y 1 & 3 A 45.4 35.2 34.0 64.2 10 
Exp. 6 Y N 2 A 32.6 35.0 29.2 35.4 10 
Exp. 25 Y N 1 A 36.4 32.0 18.1 20.1 2 
Exp. 37 Y N 1 A 33.4 19.9 24.5 18.3 6 
Exp. 42 Y N 1 A 31.2 25.8 14.0 13.1 7 
Exp. 43 Y N 1 & 2 B 30.8 39.8 19.6 33.4 8 
Total        259  

 
Exp. 17 and 30 were not included in the statistical analysis, because, as split cores, they 

contemporarily generated three flakes without leaving discernible cores.  
The cores show cortical (48.4%), semi-cortical (16.1%) and non-cortical (35.5%) striking 

platforms (Supplementary file 4: table 1). Their morphological categories (Supplementary file 
4: table 2) include plain (51.6%), linear (32.3%), winged (6.5%) and collapsed (9.7%). This 
latter comprises pieces showing both platform collapse or platform fragment (Driscoll 2010: 
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128) since it was not possible to observe the impact point because it was covered by macro 
traces. The striking platforms exhibit flat (54.8%), slightly convex (9.7%), convex (12.9%), 
slightly sinuous (3.2%), sinuous (6.5%) and irregular (12.9%) delineations (Supplementary 
file 4: table 3). Impact traces on striking platforms (Supplementary file 4: table 4) include 
crushing (12.9%) (Figure 6a & b), blunting (22.6%) (Figure 6c), notching (29%) (Figure 6d), 
whitening (3.2%) (Figure 6e) and the combination of macro traces (19.4%) (Figure 6f & h), 
while 12.9% do not exhibit impact marks. 

 

 
Figure 6. Technical macro traces on striking platforms of experimental chert (b & c), quartz (a, f, & h) and 
quartzite (d. e, & g) cores: a) crushed impact point; b) crushed striking platform blunted impact point; c) blunted 
linear striking platform; d) notched impact point; e) whitened impact point; f) crushing and cracks; g) crushing 
and notching & h) notched and whitened impact point. Black stains in e & h are residues. 

 
The ventral surface of proximal ends display crushing (38.7%) (Figure 7a-c), cascade 

(16.1%) (Figure 7d), macro scar (12.9%) (Figure 7e), micro scar (3.2%) (Figure (7f), 
overlapping macro scars (3.2%), the combination of macro traces (9.7%) (Figure 7g & h) and 
no signs (16.1%) (Supplementary file 4: table 5). The dorsal surface of proximal ends exhibit 
crushing (16.1%), cascade (9.7%), Hertzian cone (3.2%), whitening (3.2%), macro scar 
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(3.2%) and overlapping macro scars (3.2%) and the combination of macro traces (6.5%) while 
the remaining do not exhibit impact traces (54.8) (Supplementary file 4: table 6).  

 

 
Figure 7. Technical macro traces on the ventral surface of the proximal end of experimental chert (a, b, d, g & h), 
quartz (c) and quartzite (e & f) cores: a) crushed impact point; b) crushing c) crushing and collapsed striking 
platform; d) cascade; e) macro scar; f) micro scar; g) crushing and overlapping macro and micro scars and h) 
overlapping macro and micro scars.  

 
Resting platforms were cortical (64.5%), semi-cortical (3.2%) and non-cortical (32.3%) 

(Supplementary file 4: table 7). Their morphological categories (Supplementary file 4: table 
8) include plain (83.9%), linear (9.6%), winged (3.2%) and collapsed (3.2%) and their 
delineations (Supplementary file 4: table 9) are flat (54.8%), slightly convex (9.7%), slightly 
concave (6.5%), concave (3.2%), sinuous (9.7%) and irregular (12.9%). Macro technical 
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traces on the resting platforms (Supplementary file 4: table 10) comprise blunting (6.5%) 
(Figure 8a), notching (19.4%) (Figure 8b), whitening (9.7%) (Figure 8c & d), incipient 
Hertzian cone (3.2%) (Figure 8e), double incipient Hertzian cone (3.2%), the combination of 
macro traces (45%) (Figure 8f-h), while 12.9% do not show macro traces.  

 

 
Figure 8. Technical macro traces on resting platforms of experimental chert (f-g), quartz (e) and quartzite (b-d & 
h) cores: a) blunting; b) notching; c & d) whitening; e) incipient Hertzian cone; f) notching, multiple incipient 
Hertzian cones and concentric partial Hertzian cone cracks; g) crushing, notching, concentric partial Hertzian 
cone cracks and cracks; h) notching and crack. 

 
The ventral surface of distal ends exhibit crushing (19.4%), cascade (6.5%), double 

Hertzian cone (3.2%), macro scar (3.2%), not overlapping macro scars (12.9%), not 
overlapping micro scars (6.5%), overlapping micro scars (3.2%) and the combination of 
macro traces (16.1%), while 29% do not show macro traces (Supplementary file 4: table 11). 
The dorsal surface of distal ends show crushing (6.5%), cascade (3.2%), whitening (3.2%), 
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macro scar (6.4%), not overlapping macro scars (9.7%), not overlapping micro scars (3.2%), 
overlapping macro scars (3.2%) while 64.5% do not show macro traces (Supplementary file 
4: table 12). 

The 31 cores show 136 bulbs in total. They are located on the ventral (30.9%), dorsal 
(8.8%) and lateral (6.6%) surfaces of the striking platforms as well as ventral (28.7%), dorsal 
(8.8%) and lateral (16.2%) surfaces of the resting platforms (Supplementary file 4: table 13). 
Bulb (n = 63) and counter-bulb (n = 73) types include flat (21.3%), negative (19.1%), crushed 
(22.8%), negative crushed (19.6%), sheared (3.7%), double sheared (1.5%), negative spike-
shaped (2.2%), dihedral (3.7%), dihedral crushed (2.9%) positive (2.9%) examples 
(Supplementary file 4: Table 14).  

For the scar orientations on cores see Table 9, and see Supplementary file 4: table 15, for 
the number of scars for each core and their orientations. 

 
Table 9. Scars orientations on experimental cores. 
Scars orientations Total 
Unidirectional from SP  8 
Unidirectional from RP  1 
Opposite 17 
Orthogonal 5 
Total 31 

 
In general, only 9.7% of the cores are non-cortical, while 38.7% show cortex <50% and 

51.6% >50%. Excluding semi-cortical (n = 9) and non-cortical (n = 1) pebbles and cobbles 
and three chunks with cortex <50% (Exp. 60.1, 60.2 and 60.3) and three chunks with cortex > 
50% (Exp. 47.1, 47.2 and Exp. 49.1) that have been used as cores, 19 cores have been 
produced from 100% cortical pebbles or cobbles (n = 21). Exp. 17 and 30 are not included in 
this count because they split into three and four flakes. Of the 19 cores, 42.1% show cortex 
<50%, while 57.9% show cortex >50%. 

 
3.2. Blanks attributes and macro technical traces results 

Flakes (78.8%) represent the majority of the complete blanks produced, followed by 
bladelets (7.7%) and blades (2.7%). Among the flakes, “orange segments” (5.8%) (Ballin 
2021: fig. 4) and “lemon slices” (3.2%) (Bialowarczuk 2015: fig. 3-5) occur (Supplementary 
file 5: figures 1 & 2). Additionally, there are flake (5%), orange segment and bladelet (1.2%) 
fragments (1.2%) as well as chunks (2.3%) and shatter (1.2%). Among the 132 blanks from 
pebbles and cobbles with 100% of cortex, there are primary (30.3%), secondary <50% of 
cortex (30.3%), secondary >50% of cortex (26.5%) and tertiary (12.9%) examples. The cortex 
is located on the dorsal surface, butt and counter-butt and one or both of lateral sides. 49.2% 
of blanks show one sharp edge, 20.5% have two sharp edges, and 30.3% have none. Their 
morphologies (Supplementary file 5: table 1) are sub-rectangular (34.4%), rectangular (4.8%), 
sub-square (4%), sub-circular (0.8%), sub-ovate (4.8%), ovate (0.4%), sub-triangular (3.2%) 
and irregular (47.6%). Average dimensions of complete blanks (n = 231) and fracture types 
are resumed in Tables 10 & 11.  
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Table 10. Univariate statistic of dimensions of complete experimental blanks (n = 231), including flakes, blades 
and bladelets, across lithotypes. 

Lithotypes  
Length 
(mm) 

Width 
(mm) 

Thickness 
(mm) 

Weight 
(gr) 

Chert N 133 133 133 133 
Average length of the  Min 11.0 6.0 2.2 0.4 
original pebbles Max 64.8 70.9 30.2 80.3 
78.38 15.33 Mean 30.53 25.64 10.06 9.35 
 Stand. dev 10.26 10.92 5.89 12.38 
Quartz N 43 43 43 43 
Average length of the  Min 13.2 10.6 3.0 0.7 
original pebbles Max 59.1 61.5 33.2 52.3 
52.32 8.6 Mean 33.63 25.02 12.57 13.01 
 Stand. dev 10.7 9.77 6.53 11.32 
Quartzite N 55 55 55 55 
Average length of the  Min 7.9 5.7 1.6 0.2 
original pebbles Max 45.5 46.3 19.3 30.0 
45.7 8.72 Mean 27.81 20.71 8.83 6.95 
 Stand. dev 8.36 9.25 4.76 7.47 

 
Table 11. Types of fracture across lithotypes. 
Lithotypes Chert Quartz Quartzite Total 
Siret 1 6 5 12 
Bending 2 2 1 5 
Transversal oblique - 2 - 2 
Total 3 10 7 19 

 
Butts are cortical (42%), semi-cortical (10.4%), non-cortical (46.4%) and indeterminate 

(1.2%) (Supplementary file 5: table 2). The morphological categories of the butts 
(Supplementary file 5: table 3) include plain (42%), linear (30.8%), punctiform (16%), 
winged (5.6%), collapsed (4.4%) and broken (1.2%). Their profiles (Supplementary file 5: 
table 4) are flat (34.8%), slightly convex (19.2%), convex (20.4%), slightly concave (1.6%), 
slightly sinuous (1.2%), sinuous (2.4%), irregular (16.8%), dihedral (2.4%) and indeterminate 
(1.2%). The impact of the hammerstone on the butt (Supplementary file 5: table 5) often did 
not leave marks (23.2%), whereas crushing (39.2%), blunting (4.4%), notching (16.4%), 
incipient Hertzian cone (2.4%), multiple incipient Hertzian cones (0.4%), whitening (2.4%) 
and the combination of macro traces (10.4%) occur. 1.2% was indeterminate. The ventral 
surfaces of the proximal ends (Supplementary file 5: table 6) show crushing (45.6%), 
Hertzian cone (3.6%), multiple Hertzian cones (0.4%), macro scar (8.4%), micro scar (0.4%), 
not overlapping macro scars (1.6%), overlapping macro scars (0.4%), overlapping micro scars 
(0.8%) and the combination of macro traces (3.2%), 34.4% do not. 1.2% was indeterminate. 
Proximal bulbs of percussion (Supplementary file 5: table 7) are flat (32%) (Figure 9a & b), 
crushed (12%) (Figure 9c), dihedral (6%) (Figure 9d), dihedral crushed (6.8%) (Figure 19e), 
hinge (8%) (Figure 6f), Hertzian cone (2.8%) (Figure 9g), multiple Hertzian cones (0.4%), 
negative (6.4%) (Figure 9h) and sheared (4.8%) (Figure 9i). Other examples include positive 
(2%), positive diffuse (9.2%), negative crushed (5.6%), negative spike-shaped crushed 
(0.4%). 2.4% do not have bulb and 1.2% was indeterminate. The 59.6% of the dorsal surfaces 
do not show impact traces (Supplementary file 5: table 8), whilst crushing (23.6%), notching 
(0.8%), cascade (2.8%), Hertzian cone (1.2%) macro scar (5.6%), micro scar (1.6%) not 



20 D. Capra et al. 

 
Journal of Lithic Studies (2025) vol. 12, nr. 1, 55 p. DOI: https://doi.org/10.2218/jls.7320 

overlapping macro scars (1.6%), overlapping macro scars (0.8%) and the combination of 
macro traces (1.2%) occur. The 1.2% was indeterminate. 

 

 
Figure 9. Types of bulb of percussion on experimental chert (a, c & e-h), quartz (i) and quartzite (b & d) blanks: 
a & b) flat; c) crushed); d) dihedral; e) dihedral crushed; f) hinge; g) Hertzian cone; h) negative and i) sheared. 

 
The blanks profiles (Supplementary file 5: table 9) are straight (30.8%), slightly convex 

(8%), convex (6.4%), slightly concave (6%), concave (10%), sinuous (22%), twisted (6.4%) 
and irregular (10.4%). Distal ends (Supplementary file 5: table 10) exhibit axial (52%), 
feather (26.8%), step (9.2%), hinge (10%) and plunge (2%) terminations. Axial terminations 



D. Capra et al. 21 

 
Journal of Lithic Studies (2025) vol. 12, nr. 1, 55 p. DOI: https://doi.org/10.2218/jls.7320 

(Supplementary file 5: table 11) are cortical (58.5%), semi-cortical (9.2%) and non-cortical 
(32.3%). The axial terminations have plain (66.2%), linear (15.4%), punctiform (10%), 
winged (4.6%) and collapsed (3.8%) morphological categories (Supplementary file 5: table 
12). Their profiles (Supplementary file 5: table 13) are flat (44.6%), slightly convex (13.1%), 
convex (18.5%), slightly concave (6.2%), concave (1.5%), sinuous (1.5%), dihedral (0.8%) 
and irregular (13.8%). Crushing (23.1%), blunting (2.3%), notching, (20.8%), incipient 
Hertzian cone (2.3%), multiple incipient Hertzian cones (1.5%), whitening (5.4%), cracks 
(0.8%) and the combination of macro traces (22.3%) occur on the counter-butt surfaces, 
whilst (21.5%) do not show counterstrike signs (Supplementary file 5: table 14). Their ventral 
surfaces (Supplementary file 5: figure 3 & table 15) show crushing (44.6%), Hertzian cone 
(1.5%), double Hertzian cone (3.1%), multiple Hertzian cones (0.8%), macro scar (13.8%), 
micro scar (2.3%) not overlapping macro scars (8.5%), not overlapping micro scars (1,5%), 
the combination of macro traces (3.8%) and no signs (20%).  

78.5% of axial terminations show distal bulb as observed by Kobayashi (1975), Kuijt et 
al. (1995) and Mourre (1996a), while the remaining 21.5% do not. Distal bulb types 
(Supplementary file 5: table 16) include flat (6.2%), positive (5.4%) (Figure 10a), positive 
diffuse (0.8%) (Figure 10b), positive prominent (3.1%), double Hertzian cone (0.8%), 
multiple Hertzian cones (0.8%) (Figure 10c), dihedral (7.7%), dihedral crushed (9.2%) 
(Figure 10d), negative spike-shaped crushed (1.5%) (Figure 10e), negative (7.7%) (Figure 
10f), negative crushed (9.2%) (Figure 10g), crushed (11.5%), sheared (13.8%) (Figure 10h) 
and double sheared (0.8%). The dorsal surfaces show crushing (23.8%), cascade (2.3%), 
Hertzian cone (0.8%), macro scar (4.6%), not overlapping macro scars (0.8%), not 
overlapping micro scars (0.8%), overlapping macro scars (0.8%), cracks (0.8%) the 
combination of macro traces (1.6%) and no signs (63.8%) (Supplementary file 5: table 17). 
Table 12 shows from where the blanks were detached. 

Flake scar density is low in all the reduction stages with 38% of blanks showing no scars, 
35.2% one scar, 14.4% two scars, 5.6% three scars, 2.4% four scars and indeterminate 4.4%. 
Blanks show the following scar orientations: unidirectional (43.2%), opposite (11.6%), 
convergent (2%), orthogonal (0.4%), multidirectional (0.4%) and indeterminate (4.4%). See 
Table 13 for scar orientations of the whole knapped blanks and Table 14 for the bipolar 
products.  

Only one flake, after 20 strikes, was removed from a chert pebble using the hand-held 
knapping with a quartzitic sandstone without preparing a striking platform (Supplementary 
file 6: figure 6). A basalt pebble previously failed in its knapping with the hand-held 
percussion was successfully knapped using the knapping on anvil technique (Supplementary 
file 6: figure 7). 

 
Table 12. Origin of bipolar and anvil-rested non-bipolar blanks. 
 Bipolar Anvil-rested non-bipolar 
 Chert Quartz Quartzite Chert Quartz Quartzite 
From striking platform 34 38 24 48 11 15 
From resting platform 20 2 12 34 2 10 
Total 54 40 36 82 13 25 
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Figure 10. Types of distal bulbs on chert (a, c-f & h) and quartz (b & g) experimental blanks: a) positive; b) 
positive diffuse; c) multiple Hertzian cones; d) dihedral crushed; e) negative spike-shaped crushed; f) negative, 
g) negative crushed and h) sheared. Black lines indicate the cone-shaped compression zone of the prominent 
Hertzian cone, while yellow arrows indicate the position of the Hertzian cones. 
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Table 13. Blanks scars orientation: SP = striking platform, RP = resting platform and n = number of scars. 
Scars orientation Total 
Unidirectional from SP (n = 1) 59 
Unidirectional from RP (n = 1) 25 
Convergent from SP (n = 1) 1 
Convergent from RP (n = 1) 1 
Orthogonal (n = 1) 2 
Unidirectional from SP (n = 2) 10 
Unidirectional from RP (n = 2) 4 
Convergent from SP (n = 2) 2 
Opposite - from SP (n = 1) and from RP (n = 1) 19 
Opposite convergent - from SP (n = 1) and from RP (n = 1) 1 
Unidirectional from SP (n = 3) 5 
Opposite - from SP (n = 2) and from RP (n = 1) 8 
Multidirectional (n = 3) 1 
Unidirectional from SP (n = 4) 1 
Opposite - from SP (n = 3) and from RP (n = 1) 1 
Opposite - from SP (n = 1) and from RP (n = 3) 1 
Opposite - from SP (n = 2) and from RP (n = 2) 3 
Indeterminate 11 
Absent 95 
Total 250 

 
Table 14. Bipolar blanks scars orientation: SP = striking platform, RP = resting platform and n = number of 
scars.  
Scars orientation Total 
Unidirectional from SP (n = 1) 32 
Unidirectional from RP (n = 1) 16 
Orthogonal (n = 1) 1 
Unidirectional from SP (n = 2) 5 
Unidirectional from RP (n = 2) 3 
Opposite - from SP (n = 1) and from RP (n = 1) 11 
Opposite - from SP (n = 2) and from RP (n = 1) 6 
Unidirectional from SP (n = 3) 1 
Opposite - from SP (n = 1) and from RP (n = 3) 1 
Opposite - from SP (n = 2) and from RP (n = 2) 2 
Indeterminate 3 
Absent 49 
Total 130 

 
3.3. Formation of residues and micro technical traces 
3.3.1. Residues 

During the reduction core, using the knapping on anvil technique, the striking and resting 
platform undergo multiple contacts with the hammerstone and anvil’s surfaces. Each blow 
may subject the core to compression and traction from the hammerstone and anvil, which 
leads to the adhesion of residue particles that become compacted over time (Vergés & Ollé 
2011). Residues can adhere to both cortical (Figure 11c-d & e-f) and non-cortical Figure 14a-
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b & g-h) products, primarily due to prolonged percussion. The residues may appear as striated 
bands or small patches. 

 

 
Figure 11. Residues on experimental (a-d) and archaeological (e-h) lithic artefacts: a) chert core; b) non-cortical 
resting platform showing residues within of incipient Hertzian cones, and cracks; c) quartz flake; d) whitened 
impact point on cortical butt and residues e) quartz core; f) notched impact point of a cortical striking platform 
and residue; g) broken flake made from unknown siliceous stone; h) non-cortical butt showing residue within the 
double incipient Hertzian cone.  

 
Residues can also be found on blanks that are removed with a single blow, as the core 

may have experienced multiple blows during previous blank removals before it was detached. 
In this case, residues that were previously adhered to the core surfaces can be dislodged along 
with the new blank. In our experiment, out of 250 blanks, 19 were obtained with just one 
blow, and among them, only five displayed residues. See Table 15 for the total number of 
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blows the cores underwent during the experiment and where residue occur and Table 16 for 
the blanks.  

 
Table 15. Number of blows for each experimental core and residue occurrence on the striking and resting 
platform. 
  Core types   

Core ID 
Total  
blows Bipolar 

Anvil-rested  
non-bipolar 

Striking platform  
residue 

Resting platform  
residue 

Chert      
Exp. 44 21 Y N Y N 
Exp. 47.1 3 Y N N Y 
Exp. 47.2 17 Y N Y Y 
Exp. 49.1 31 Y N Y Y 
Exp. 50 28 Y N N Y 
Exp. 55 46 Y N N Y 
Exp. 59 53 Y N N N 
Exp. 60.1 13 Y N N Y 
Exp. 60.2 23 Y N N Y 
Exp. 60.3 3 Y N N Y 
Exp. 61 10 Y N Y Y 
Exp. 62 24 N Y N N 
Exp. 71 38 Y N N N 
Quartz      
Exp. 9 14 Y N N Y 
Exp. 13 5 Y N N N 
Exp. 14 16 Y N Y Y 
Exp. 15 4 Y N Y N 
Exp. 20 38 Y N N N 
Exp. 31 8 N Y Y N 
Exp. 35 20 Y N Y Y 
Exp. 67 11 Y N Y N 
Quartzite      
Exp. 1 14 Y N N N 
Exp. 2 13 Y N Y Y 
Exp. 3 3 Y N N Y 
Exp. 4 5 Y N N N 
Exp. 5 24 N Y N Y 
Exp. 6 24 Y N Y N 
Exp. 25 2 Y N N N 
Exp. 37 15 Y N Y Y 
Exp. 42 10 Y N Y Y 
Exp. 43 12 Y N N Y 
Total  28 3 13 18 
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Table 16. Number of blows for each experimental core, related blanks produced and residue occurrence: * = the 
total contains a shatter, ** = the total contains one or two chunks, A = include bipolar axial and non-axial blanks 
and B = anvil-rested non-bipolar blanks. 
    Anvil-rested Butt residue  

Core ID 
Total  
blows 

Total  
blanks 

Bipolar  
blanks 

non-bipolar  
blanks A B 

Counter-butt  
residue 

Chert        
Exp. 44 21 5* 2 2 1 1 - 
Exp. 47.1 3 1 1 - 1 - 1 
Exp. 47.2 17 10 4 6 2 4 2 
Exp. 49.1 31 13 5 8 3 7 4 
Exp. 50 28 10** 7 2 1 - 4 
Exp. 55 46 24** 14 9 - 1 10 
Exp. 59 53 20 5 15 2 3 - 
Exp. 60.1 13 6** 2 3 - - 1 
Exp. 60.2 23 10* 3 6 2 - 1 
Exp. 60.3 3 3 - 3 - 1 - 
Exp. 61 10 8** 2 5 - - 1 
Exp. 62 24 13** 4 7 - 1 2 
Exp. 71 38 21 5 16 - 1 1 
Quartz        
Exp. 9 14 7 2 5 - 1 - 
Exp. 13 5 2 2 - - - - 
Exp. 14 16 8 8 - 1 - 4 
Exp. 15 4 3 2 1 1 - 1 
Exp. 17 2 3 3 - 3 - 3 
Exp. 20 38 10 7 3 3 2 2 
Exp. 30 6 4 3 1 1 - 2 
Exp. 31 8 3 3 - - - - 
Exp. 35 20 9 6 3 5 - 4 
Exp. 67 11 4 4 - 1 - 2 
Quartzite        
Exp. 1 14 4 1 3 - - 1 
Exp. 2 13 9 4 5 - - 2 
Exp. 3 3 2 2 - - - 1 
Exp. 4 5 4 3 1 - - 1 
Exp. 5 24 10 5 5 2 2 2 
Exp. 6 24 10* 6 3 4 - 2 
Exp. 25 2 2 2 - - - - 
Exp. 37 15 6 5 1 1 - 2 
Exp. 42 10 7 4 3 - 1 2 
Exp. 43 12 8 4 4 1 - 1 
Total  259* 130 120 35 25 59 

 
Residues are mostly located next to the impact point on striking platforms (Figure 12a & 

i) and butts (Figure 12c, e, g & j) or counterstrike on resting platforms (Figure 12b & f) and 
counter-butt (Figure 12d & h). For other examples of residue adhesion, see Supplementary 
file 6: figure 1.  
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Figure 12. Location of residues detected on experimental chert (a-d), quartz (e-h) and quartzite (i & j) products 
showing different patterns of adhesion on: a & e) cortical and c) non-cortical striking platforms; c) non-cortical 
and g) cortical butts; b) non-cortical and f) cortical resting platforms; d) non-cortical and h) cortical counter-
butts; i) cortical striking platform and j) cortical butt. 

 
Residues are less frequently recorded during the earlier stages of knapping when the 

hammerstone and anvil have intact cortical surfaces. However, we observed that with intense 
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use, their surfaces became pitted due to the rupture of their cortex from impacts and counter-
strikes. This damage facilitated the adhesion of the pulverised material on the surfaces of the 
products, even during the earlier stages of knapping. This aspect was not thoroughly explored 
in our work since it was not one of our primary objectives. A more in-depth investigation is 
needed to understand its dynamics better.  

 
3.3.2. Striations 

Residues may display striations oriented parallel, oblique (Figure 13a & b) or 
perpendicular (Figure 13c & d) to the transversal axis of a core striking or resting platform 
and a flake butt or counter-butt and multi-directional oriented parallel striations (Figure 13e & 
f). Striations aligned to the longitudinal axis (Figure 13g & h) of a core striking or resting 
platform or flake butt or counter butt are less common, but they occur. Residues rarely appear 
as small patches (Figure 12h-j). Cracks can also form on compacted residue (Figure 13b).  

Typically, residues and striations have been detected on cores and blanks having flat or 
slightly convex rather than other striking or resting platforms and butt or counter-butt 
morphological categories and profiles, see Tables 17 and 18.  

 
Table 17. Morphological categories and profiles of striking and resting platforms of 
experimental cores and occurrence of residues and striations. 
Morphological  Striking platform Resting platform 
Categories Profiles Residues Striations Residues Striations 
Plain Flat  5 out of 9 3 out of 5 10 out of 14 9 out of 10 
Plain Slightly convex  1 out of 2 1 out of 1 3 out of 4 3 out of 3 
Plain Convex  1 out of 1 1 out of 1 - - 
Plain Slightly concave - - 1 out of 2 1 out of 1 
Plain Concave - - 0 out of 1 - 
Plain Slightly sinuous  1 out of 1 1 out of 1 - - 
Plain Sinuous  1 out of 1 1 out of 1 2 out of 3 2 out of 2 
Plain Irregular  0 out of 2 - 1 out of 2 1 out of 1 
Linear Flat  3 out of 7 0 out of 3 0 out of 3 - 
Linear Slightly convex  0 out of 1 - - - 
Linear Convex  0 out of 2 - - - 
Winged Flat  0 out of 1 - - - 
Winged Convex  0 out of 1 - - - 
Winged Sinuous 1 out of 1 0 out of 1 - - 
Winged Irregular - - 0 out of 1 - 
Collapsed Irregular  0 out of 2 - 1 out of 1 1 out of 1 
Total  13 out of 31 7 out of 13 18 out of 31 17 out of 18 
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Table 18. Morphological categories and profiles of experimental blanks butts and counter-
butts and occurrence of residues and striations. 
Morphological   Striking platform Resting platform 
Categories Profiles Residues Striations Residues Striations 
Plain Flat 18 out of 36 15 out of 18 33 out of 47 30 out of 33 
Plain Slightly convex 14 out of 31 14 out of 14 5 out of 10 5 out of 5 
Plain Convex 4 out of 14 3 out of 4 3 out of 8 3 out of 3 
Plain Slightly concave 2 out of 3 1 out of 2 3 out of 7 2 out of 3 
Plain Concave - - 0 out of 2 - 
Plain Slightly sinuous 1 out of 2 1 out of 1 - - 
Plain Sinuous 2 out of 3 2 out of 2 0 out of 1 - 
Plain Dihedral 0 out of 1 - - - 
Plain Irregular 5 out of 15 4 out of 5 5 out of 11 5 out of 5 
Linear Flat 1 out of 34 1 out of 1 1 out of 5 1 out of 1 
Linear Slightly convex 0 out of 12 - 0 out of 5 - 
Linear Convex 1 out of 12 0 out of 1 1 out of 5 1 out of 1 
Linear Slightly concave 0 out of 1 - 0 out of 1 - 
Linear Slightly sinuous 0 out of 1 - - - 
Linear Sinuous 0 out of 3 - 0 out of 1 - 
Linear Irregular 1 out of 14 0 out of 1 1 out of 3 1 out of 1 
Winged Flat 3 out of 8 3 out of 3 3 out of 4 3 out of 3 
Winged Slightly convex 1 out of 2 1 out of 1 - - 
Winged Convex  0 out of 1 - 0 out of 2 - 
Winged Irregular 0 out of 3 - - - 
Collapsed Flat 2 out of 2 2 out of 2 0 out of 1 - 
Collapsed Convex 0 out of 1 - - - 
Collapsed Irregular 2 out of 8 2 out of 2 2 out of 4 1 out of 2 
Punctiform Flat 1 out of 7 1 out of 1 1 out of 1 1 out of 1 
Punctiform Slightly convex 1 out of 3 1 out of 1 0 out of 2 - 
Punctiform Convex 1 out of 23 1 out of 1 1 out of 9 1 out of 1 
Punctiform Dihedral 0 out of 5 - 0 out of 1 - 
Punctiform Irregular 0 out of 2 - - - 
Absent because broken  0 out of 3 - - - 
Total  60 out of 

250 
52 out of 

60 
59 out of 

130 
54 out of 

59 
 
The striations are caused by the surface asperities of either an anvil (Figures 13e-h, & 

14a-d) or a hammerstone (Figures 13a-d & 14e-h), which plough through the residues. This 
"ploughed" residue results from friction with the hammerstone or slight movements (traction) 
occurring on the surface of the anvil (Vergés & Ollé 2011). Both types of interaction may 
occur multiple times during the reduction process of a core. For additional patterns of 
striations arrangements, see Supplementary File 6: figures 2 & 3. 

 
3.3.3. Polishing traces 

The impact of the hammerstone and the traction with the anvil can lead to the formation 
of polishing (Figure 15b, d & h) or, in some cases, no polishing at all (Figure 15f) before they 
are covered by residues (Figure 15a, c, e & g). Sometimes, residues may still be present even 
after the cleaning procedure, as indicated in a previous study (Byrne et al. 2006). Polishing 
traces become visible only after an extensive cleaning process using 92% hydrogen peroxide, 
which effectively removes the residues. 
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Figure 13. Residues adhered to experimental materials detected with stereomicroscope (a, c, e & g) and 
metallographic microscope (b, d, f & h): a) quartz cortical striking platform; b) oblique, parallel striations and 
cracks on residue; c) chert non-cortical butt showing incipient Hertzian cones and parallel striations on residue 
following the longitudinal axis; d) parallel striations on residue perpendicular to the longitudinal axis; e) 
quartzite cortical counter-butt; f) multi-directional parallel striations; g) chert cortical counter-butt showing 
residue ploughed from longitudinal striations and h) residue showing parallel striations following the 
longitudinal axis. 
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Figure 14. Experimental chert core resting platform (a) and quartzite flake butt (e): b) multiple incipient Hertzian 
cones and residues; c) previous residues plough by parallel striations developing in several directions, observed 
with Back-scattered electron detector (BSED); d) detail of e) observed with Back-scattered electron detector 
(BSED; f) residues; g) previous residues plough by parallel striations developing diagonally to the short axis of 
the butt, observed with Back-scattered electron detector (BSED) and h) detail of g) observed with Back-scattered 
electron detector (BSED. Yellow arrows indicate the direction of the striations. 
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Figure 15. Image showing the same point before (a, c, e & g) and after the cleaning (b, d, f & h) with Hydrogen 
peroxide at 92% of experimental (a-f) and archaeological (g & h) stone artefacts: a) resting platform of chert 
core showing striations on residues, incipient Hertzian cone and polishing traces; b) polishing traces, after 60’; c) 
random striations and residues developed on the resting platform of experimental chert core; d) polishing traces, 
after 40’; e) random striations and residues developed on cortical butt of quartz flake; f) cleaned cortical butt, 
after 15’; g) chert flake butt or counter-butts showing residues and h) cleaned surface showing polishing, after 
25’. 
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3.3.4. Characterisation of residues 
The Energy-dispersive X-ray spectroscopy (EDS) analysis performed on an experimental 

quartzite flake (Supplementary file 6: figure 4) identified the presence of silicon (Si), oxygen 
(O), calcium (Ca), magnesium (Mg), carbon (C), potassium (K) and aluminium (Al). Si and O 
are the primary components of quartzite, while K and Al are typically present in a minimal 
amount. Conversely, Mg, Ca, and C can be attributed to the residue left by the dolomite 
hammerstone used during the knapping process, as these elements overlap in the same spot. A 
quartz core that was knapped with the same dolomite hammerstone shows the same chemical 
elements on its striking platform (Supplementary file 6: figure 5a-c). Additionally, Si, O, Al, 
Mg, Ca, iron (Fe), sodium (Na), C, phosphorus (P), and titanium (Ti) were detected on the 
butt of a chert flake (Supplementary file 6: figure 5d-f) and the resting platform of a core 
placed on a quartzitic sandstone anvil. Both specimens were knapped with the same quartzite 
hammerstone. The EDS analysis of the residues reveals a higher concentration of Al, Mg, and 
Ca compared to the chert, allowing the interpretation of the residues as quartzite. 

The residues found on an archaeological broken flake were located within a double 
incipient Hertzian cone (Figure 16), which includes Ca, Fe and manganese (Mn), have been 
interpreted as potentially originating from a granitic rock possibly used as an anvil. This 
inference is supported by longitudinal striations observed on the residue. Approximately 68% 
of the macro-lithic assemblage at Mahal Teglinos is made from granite, which comprises 
grinding, pounding and hammering tools (Rega 2020a: 86-95). The elements composing the 
residue on the broken flake have been detected among the minerals composing the granite 
rocks from Mahal Teglinos, such as plagioclase, biotite, pyrite, apatite and ilmenite (Rega 
2020a: 362-367). Additionally, the EDS analysis of two distinct types of granite fragments 
from Mahal Teglinos (Figure 17) confirmed the elements composing the residue on the 
broken flake for one of them. 

 
4. Discussion 

The lithic sample includes "not curated" (Binford 1979) micro-flakes and tools, generally 
less than 25 mm in length, though there are some rare, larger examples. The collection 
includes only two blades, two bladelets, and four bladelet fragments. The blanks were made 
from small, water-worn, rounded, or oval quartz and basalt pebbles as well as chert, 
chalcedony and agate cobbles. Fourteen cores and eight flakes reused as cores were primarily 
knapped on an anvil along the vertical longitudinal axis. One core on flake was knapped 
following the vertical transverse axis. Additionally, four cores were rotated using the vertical 
longitudinal and transverse axis, while one core was rotated on three sides (anvil-rested, 
vertical longitudinal and anvil-rested). Only one core, which was knapped using the anvil-
assisted method, displays flake removals around its circumference, showcasing a distinct 
knapping pattern (Supplementary file 1: figure 2d). Furthermore, two small-sized quartz 
casual cores and a one-platform core appear to have been flaked using the oblique knapping 
on anvil method (van der Drift 2012). The knapping on anvil was also used to produce tiny 
flakes measuring less than 15 mm in length, as seen in two chalcedony micro-cores. In a few 
instances, this knapping technique was further applied to retouch blanks. 11% of the lithics 
was made using the hand-held technique. The absence of cortex on 77.8% of the hand-held 
blank butts suggests that the striking platforms of the cores were either prepared or that 
previous flake scars were used as striking platform (Guardiola et al. 2016).  

Due to the limited number of lithic artefacts in the analysed sample, we can only provide 
a preliminary overview of the lithic manufacturing processes at Mahal Teglinos. The 
knapping on anvil technique was used for flaking chert, quartz, quartzite, agate, chalcedony 
and basalt. 
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Figure 16. Archaeological broken flake made from siliceous rock: a) siliceous rock broken flake showing residue 
deposits on the butt/counter-butt; b) close-up of point a) showing the residue deposits; c) SEM image of the 
residue spot showed in b), marked in green, Large field detector (LFD); d) previous residue observed with Back-
scattered electron detector (BSED); e) SEM image showing the superposition of chemical elements identified on 
the same residue using Energy-dispersive X-ray spectroscopy (EDS); f) EDS spectrogram showing peaks of Si, 
O, Al, Ca, K, Fe, Mg, Ti, Na, C, Mn and P; g to q) spectra maps of all peaks identified. White arrows indicate 
the striations. 
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Figure 17. Energy-dispersive X-ray spectroscopy (EDS) analyses of two granite fragments from Mahal Teglinos: 
a) grey granite and b) pink granite, which show the elements composing the residue identified on the 
archaeological broken flake. 

 
In contrast, the hand-held technique appears primarily associated with chert, likely due to 

the size of the pebbles. 
Studies indicate that the knapping on anvil technique significantly enhances the 

efficiency of the transmission of energy and reduction processes, especially when dealing 
with small or poor-quality raw materials (Andrefsky 1994; Flenniken 1980; Prous & Alonso 
1990; Tallavaara et al. 2010; Yang et al. 2016). However, the selection of pebbles or small 
cobbles and specific lithotypes may reflect cultural decisions rather than natural constraints 
(Boëda et al. 2014; Gallotti et al. 2020; Marciani et al. 2020; Marks et al. 1987).  

Quartz pebbles originate from the eroded granitoid formations near Kassala (Geological 
Research Authority of the Sudan (GRAS) 2004; Costanzo et al. 2021) and occasionally occur 
in the Gash River's sandy riverbed near Mahal Teglinos. Chalcedony and agate nodules are 
commonly found in the sites of the western portion of the plain separating the Gash and 
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Atbara rivers and originate from Cainozoic basalt outcrops eroded by the Atbara River south 
of Khashm el Girba (Abbate et al. 2010). In contrast, the larger chert cobbles are not local. 
Potential sources of chert may include the Ethiopian Plateau to the southeast, which is 
approximately a three-day walking distance along the Takazze River. The Takazze River is a 
tributary of the Atbara River, and it could transport eroded chert pebbles and cobbles from the 
Ethiopian Plateau. Other potential chert sources are the Hudi Formation to the north (Abbate 
et al. 2010; Bussert et al. 2018; GRAS 2004) and the Shendi Reach Formation to the 
northwest (Babkir et al. 2023). In the southwest, another potential source is the Khashm el 
Girba area, where the gravel bars of the Atbara River contain pebbles and cobbles of chert, 
agate, quartz, quartzite, greenstone, and volcanic rock (Marks et al. 1987).  

Our hypothesis, based on the material analysed so far, is that the use of knapping on the 
anvil was a cultural decision made by the Gash Group knappers rather than a natural 
constraint for producing small blanks and tools from small pebbles and cobbles of various 
lithotypes, particularly quartz and chalcedony. The lithic artefacts created using this knapping 
technique likely fulfilled specific objectives within their technological system and agro-
pastoral economy. The case of six chert and two quartz cores on flakes also attests to the use 
of the knapping on anvil technique to recycle blanks (Barsky et al. 2015; Zaidner 2013). The 
remaining three exhausted chert cores and a two-platform core are non-cortical or semi-
cortical, with cortex less than <50%, indicating that they were in an advanced stage of 
reduction or were likely reused chunks. In our experiment, when 100% of the cortical pebbles 
were reduced, 86.7% of the blanks and all the cores retained some cortex. Other experiments 
have also shown a higher percentage of cortex on knapped on anvil products when employing 
small cobbles or nodules (Ahler 1989; Kuijt et al. 1995). Furthermore, there is no evidence 
that the hand-held percussion was applied to these cores before flaking with the knapping on 
anvil technique. In contrast, only two quartz flakes were reused as cores, while none of the 
quartz cores could be knapped using hand-held percussion due to their small size. 

In the surrounding regions of Mahal Teglinos, hand-held products and those derived 
from the knapping on an anvil technique were identified at several sites. Analysis of the lithic 
assemblages from Mesolithic and Neolithic sites near the Atabara River to the northeast of 
Khashm el Girba revealed that the knapping on anvil technique increased when the blade 
production decreased at KG 68. This knapping technique was used for producing agate and 
quartz blanks and tools, unlike at KG 15/16, KG 73 and KG 74, where chert was the 
predominant lithotype, followed by agate (Marks 1987; Marks et al. 1987). Other Neolithic 
sites in the Butana region yielded knapped on anvil lithics in varying quantities, ranging from 
the least to the most represented (Mbutu 1991).  

Investigations at the Kokan rock shelter, located in Agordat, Eritrea, provided a 
chronological framework spanning the Middle and Classic Gash Group (2300-1700 BCE) to 
the Pre-Axumite period (7th-3rd Centuries BCE). The most flaked lithotypes were quartz and 
basalt, followed by obsidian and chert. Both hand-held and knapping on anvil techniques 
were identified, with the latter accounting for 12% of the cores (Brandt et al. 2008). In the 
Aksum conurbation, lithic assemblages from Pre-Aksumite and Aksumite sites include 
obsidian cores and blanks showing evidence of knapping on anvil along with chert, quartz 
hand-held products (Phillipson 2009).  

Macro-technical traces and attributes of products derived from the knapping on anvil 
technique are easier to recognise in chert (de la Peña 2015a; 2015b) than in quartz (Driscoll 
2011; de Lombera Hermida 2009; Mourre 1996b; Tallavaara et al. 2010) and quartzite (Byrne 
et al. 2015; Proffitt & de la Torre 2014). It depends on the proprieties of these rocks (Cotterell 
& Kamminga 1990: 129; Driscoll 2010: 5-8; de Lombera Hermida 2009; Luedtke 1979; 
Mourre 1996b, Seong 2004; Will 2021). Quartz and quartzite are not a homogenous raw 
material and tend to break unintentionally due to their low elasticity, internal flaws, and 
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crystalline surfaces (de Lombera Hermida 2009; Tallavaara et al. 2010). Depending on the 
internal flaws, chert nodules can also lead to unpredictably flaking (Ma et al. 2020). 

Hayden (1980) noted that identifying the knapping on anvil blanks relies on several 
diagnostic patterns, not all of which need to be present. In our experiment, isolated technical 
macro traces or their combination developed on cores and blanks in different positions, 
confirming the result of Hayden’s experiment. For these reasons, it is better to create an 
experimental programme to record with a more conservative observation as many variables as 
possible involved in the formation of macro and micro technical traces as well as the adhering 
of residues on butts or counter-butts and striking or resting platforms. In other experiments 
dealing with the interpretation of knapping on anvil and hand-held products, a more 
conservative observation resulted in a more precise identification of such products (Byrne et 
al. 2015; Proffitt & de la Torre 2014). These variables include the position and the shape of 
the core and the profile of the striking and resting platforms (Boëda et al. 2014; Ollé & 
Vergès 2011) and anvil (Arrighi et al. 2020; Jeske 1992). These factors increase the contact 
points during impact and affect the control of transmitted energy. Further variables to 
consider are the lithotypes, hardness and mass of the hammerstone (Byrne et al. 2006; 
Crabtree 1967; van der Drift 2009; Proffitt et al. 2016; Rots 2010a; Yeşilova et al. 2024), 
anvil (Arrighi et al. 2020; Roda Gilabert et al. 2012) and core (van der Drift 2009). 
Furthermore, knapping skill may influence the final products in both knapping on anvil and 
hend-held techniques (Byrne et al. 2015; Proffitt et al. 2016 and references cited therein; 
Yeşilova et al. 2024). 

A chert core (Exp. 55), produced by knapping in the anvil-assisted position from one half 
of a split cobble (Supplementary file 3: figure 2e), displayed a carinated morphology with 
denticulated delineations (Figure 11a), resembling the so-called Clactonian notches, which are 
essentially the negative of the removed flakes. Other experiments have yielded similar results 
(Crovetto et al. 1994; Van der Drift 2009; Vergès & Ollé 2011; Zaidner 2014). This type of 
core is absent from archaeological specimens. The other experimental cores share features, 
such as shapes and technical macro traces, as recorded in other studies (Grimaldi et al. 2007; 
Sánchez-Yustos et al. 2017; Zaidner 2014). 

In our experiment, excluding the 130 axial blanks and employing a conservative 
approach for analysing the specimens, only one flake exhibiting a hinged bulb and a step 
termination could be misinterpreted as having been knapped using a hand-held percussion 
technique out of 120 anvil-rested blanks. The remaining artefacts displayed at least one macro 
or micro technical trace resulting from the knapping on anvil technique. Although 40 of these 
blanks exhibited various butt morphologies, including plain, slightly convex, convex, 
irregular, or slightly concave, as well as non-axial terminations that could also arise from 
hand-held percussion, their association with technical traces from the anvil technique 
confirms they are indeed anvil-knapped products. Of the 130 axial blanks, four and one of the 
120 anvil-rested blanks exhibited one or two prominent bulbs on the ventral surface of both 
the distal and proximal ends. The four axial blanks come from Exp. 55, which was positioned 
in the anvil-rested state. It featured a convex striking platform and a flat resting platform. A 
prominent bulb is characteristic of the hand-held knapping method, in contrast to the diffuse 
bulb, which is associated with knapping on an anvil (Supplementary file 2: figure 3), 
particularly employing the oblique method (Van der Drift 2012). It is essential to identify 
macro or micro technical traces from knapping on an anvil, along with the presence of 
prominent bulbs on blanks, to prevent misinterpretation of the knapping technique. All 
archaeological blanks with a prominent bulb have been categorised as hand-held products 
because they did not display macro technical traces typical of the knapping on anvil 
technique. Conversely, none of the archaeological knapped on anvil blanks showcased this 
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type of bulb of percussion. This aspect necessitates further investigation, as prominent bulbs 
were not anticipated in blanks resulting from the anvil knapping technique.  

Notching and whitening (Driscoll 2010: 146) observed on some archaeological and 
experimental cores are not technical macro traces exclusive to the knapping on anvil 
technique. While they can also result from hand-held knapping, the presence of these impact 
or counter-strike marks on pebbles and small cobbles suggests that they were likely cores 
knapped using the knapping on anvil technique. It is established from previous studies that 
knapping waterworn round or oval pebbles and small cobbles using a hand-held technique is 
difficult, if not impossible, due to the absence of a natural striking plane (Andrefsky 1994; 
van der Drift 2009; 2012; Flenniken 1980: 51-52; Prous & Alonso 1990). For instance, see 
our negative attempts at hand-held knapping of chert, quartzite and basalt small cobbles less 
than 100 mm in length (Supplementary file 6: figures 6 & 7). Therefore, the presence of these 
macro traces would suggest a likely connection to the anvil knapping technique. 

Residues have only been detected on a broken flake featuring plain morphology and a 
flat profile of the butt or counter-butt, along with a core exhibiting plain morphology and a 
slightly convex profile of the striking platform. The lower percentage of residues found on 
archaeological materials compared to experimental ones may depend on several factors 
(Cnuts & Roots 2024; Touzé & Rots 2025), including the prior cleaning conducted before this 
study. The residues observed on the broken flake display parallel striations that follow the 
longitudinal axis of the butt or counter-butt. They are located within a double incipient 
Hertzian cone, and are indeed manufacturing residues rather than resulting from subsequent 
contamination. This pattern of striated residue may result from the traction of the anvil, as 
observed on three experimental flakes removed from the counterstrike (Supplementary file 6: 
figure 8). None of the experimental blanks detached by the impact with the hammerstone 
shows the striated residue pattern identified on the archaeological specimen. In contrast, the 
blanks detached by the impact with the hammerstone may exhibit clusters of parallel 
striations that abruptly change direction, as previously demonstrated by Vergès & Ollé 
(2011), or striations perpendicular to the longitudinal axis of the butt and counter-butt, or 
striking and resting platforms.  

In distinguishing between products created using hand-held and knapping on anvil 
techniques, which display macro technical traces that can stem from both methods, such as 
plain morphology and cortical or non-cortical flat or slightly convex profiles of the butt, light 
crushing, prominent and hinged bulbs, the distribution pattern of residues and striations is an 
important factor to consider, if they occur. Our experimental hand-held flakes exhibit residues 
ploughed by oblique striations or striations following the longitudinal axis of the non-cortical 
butts. In 90% of cases, these striated residues are located within the incipient Hertzian cone 
(Supplementary file 6: figure 9), with very few found outside this area, as also demonstrated 
in other experiments on producing hand-held chert blades (Touzé & Rots 2025) and blanks 
using hammerstones from various lithotypes (Rots 2010a). Furthermore, the non-cortical butts 
predominantly show a single impact point, with occasional double impact points. In contrast, 
detaching a blank using the knapping on anvil technique typically requires multiple strikes, as 
observed in our experiment and supported by earlier research (Jeske 1992; Kuijt et al. 1995). 
In instances of cortical butts, the incipient Hertzian cones do not occur. The knapping on anvil 
increases variability in both technical macro (Hayden 1980) and micro traces (Vergès & Ollé 
2011) and may result in the deposition of residues in different areas of the blank's butt and 
counter-butt or a core's striking and resting platforms. However, we noted that more than one 
blank can be detached simultaneously. In such cases, only the blank that experiences 
significant impacts with the hammerstone and rebound from the anvil is likely to show 
technical micro-traces and residues. In contrast, the others do not, making their interpretation 
difficult if none of the technical attributes are present.  
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Similar patterns of residues and striations can be observed on blanks that have been 
tangentially knapped (Ibañez et al. 1990; Rots 2010a; 2010b: 249 & 251-252) or retouched 
using either hand-held percussion or a stone as an anvil (Byrne et al. 2006; Fasser et al. 2024; 
Ibañez et al. 1990; Keeley 1980: 20; Mansur-Franchomme 1986: 214-215; Rots 2010b: 43-44 
& 248-253). However, for tangential retouch, the residues and striations are distinct from 
those produced by the anvil knapping technique. This distinction arises from their location on 
either the ventral or dorsal surfaces of the blank's edges, as well as the lighter development of 
residues and the rarity of incipient Hertzian cones (Fasser et al. 2024; Rots 2010b: 43-44). In 
contrast, products that have been knapped on an anvil may exhibit flaking residues and 
striations on the butt or counter-butt, along with striking or resting platforms. For a 
comparison of the striated residues produced by knapping on anvil and hand-held techniques, 
refer to Supplementary file 6: figures 2-3 & 9-10. 

 
5. Conclusions 

Our research provides diagnostic macro and micro technical traces derived from the 
knapping on anvil technique, offering new insights for identifying products created through 
the exploitation of pebbles and small cobbles. The complementary approach we propose for 
studying cores and blanks may assist in recognising them as products of knapping on an anvil 
technique, particularly in lithic assemblages that comprise products from different knapping 
techniques. This approach is particularly advantageous for cores, and for blanks that may 
display features similar to those of hand-held products.  

Additionally, our study provides guidance on where to search for residues and striations, 
enabling researchers to apply this methodology more efficiently and avoid wasting time 
selecting materials for analysis. Since this preliminary study was conducted on a small set of a 
lithic assemblage that had already been analysed and cleaned, we plan to extend this analysis 
to new materials from Mahal Teglinos. This will assist us in reconstructing the steps of the 
chaîne opératoire, from selecting the raw materials used as hammerstones and anvils to the 
utilisation of the stone artefacts.  

The production of blanks from pebbles and small cobbles using the knapping on anvil 
technique at Mahal Teglinos and other sites in Eastern Sudan may have resulted from the 
economic changes occurring after the Neolithic period, particularly with the adoption of an 
agro-pastoral system by the Gash Group people. 
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Sommario: 
Nonostante l'esistenza di un'intensa ricerca focalizzata sulla caratterizzazione delle macro tracce 
derivate dall'uso della tecnica di scheggiatura su incudine, poca attenzione è stata dedicata 
all'individuazione delle micro tracce tecniche e dei residui su schegge e nuclei prodotti per mezzo di 
questa tecnica di scheggiatura. Le tracce macro tecniche derivate dalla tecnica di scheggiatura su 
incudine sono state individuate su manufatti in pietra provenienti dall'assemblaggio litico del Gruppo 
Gash (metà III - inizio II millennio a.C.) a Mahal Teglinos (K1), situato nella moderna regione di 
Kassala, nel Sudan orientale. Un programma sperimentale è stato sviluppato per localizzare i residui e 
le macro e micro tracce di produzione di questa tecnica di scheggiatura, utilizzando ciottoli e piccoli 
ciottoloni di quarzo, quarzite e selce per creare una collezione di riferimento per l'interpretazione del 
materiale archeologico. La metodologia adottata per questo studio prevedeva l'uso combinato di 
diversi microscopi per l'analisi delle tracce e dei residui. I microscopi digitali stereo e 3D sono stati 
utilizzati per caratterizzare le tracce macro tecniche e individuare eventuali residui. La composizione 
chimica elementare dei residui è stata caratterizzata attraverso la microscopia elettronica a scansione 
(SEM) utilizzando raggi X a dispersione di energia (EDS) e mappe di elementi. L'associazione di 
macro e micro tracce (evidenze di politura e striature) identificate sui materiali sperimentali ha 
permesso di confrontare e individuare tracce tecniche simili su alcuni materiali archeologici, in quanto 
esistono casi in cui simili macro tracce possono derivare dalla scheggiatura a percussione diretta. Il 
nostro esperimento ha dimostrato che le macro tracce sono presenti su quasi tutte le repliche di 
manufatti litici, mentre i residui si sviluppano più facilmente su manufatti litici con caratteristiche 
specifiche del tallone e del tallone opposto delle schegge e sul piano di percussione e la superficie in 
contatto con l'incudine dei nuclei. Le micro tracce tecniche confermano che le schegge e i nuclei sono 
stati prodotti con la tecnica di scheggiatura su incudine quando le macro tracce caratteristiche di 
questa tecnica di scheggiatura sono presenti sui manufatti litici di un assemblaggio, mentre i residui 
indicano la litologia del percussore e dell'incudine utilizzate. 
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