Top ▲
Unless otherwise stated all data on this page refer to the human proteins. Gene information is provided for human (Hs), mouse (Mm) and rat (Rn).
Show »« Hide
More detailed introduction
Calcium- and sodium- activated potassium channels are members of the 6TM family of K channels which comprises the voltage-gated KV subfamilies, including the KCNQ subfamily, the EAG subfamily (which includes hERG channels), the Ca2+-activated Slo subfamily (actually with 6 or 7TM) and the Ca2+- and Na+-activated SK subfamily (nomenclature as agreed by the NC-IUPHAR Subcommittee on Calcium- and sodium-activated potassium channels [12]). As for the 2TM family, the pore-forming a subunits form tetramers and heteromeric channels may be formed within subfamilies (e.g. KV1.1 with KV1.2; KCNQ2 with KCNQ3).
KCa1.1
C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||
KCa2.1
C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||
KCa2.2
C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||
KCa2.3
C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||
KCa3.1
C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||
KNa1.1
C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||
KNa1.2
C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||
KCa5.1
C
Show summary »« Hide summary
More detailed page
|
* Key recommended reading is highlighted with an asterisk
* Dopico AM, Bukiya AN, Jaggar JH. (2018) Calcium- and voltage-gated BK channels in vascular smooth muscle. Pflugers Arch, 470 (9): 1271-1289. [PMID:29748711]
* Kaczmarek LK, Aldrich RW, Chandy KG, Grissmer S, Wei AD, Wulff H. (2017) International Union of Basic and Clinical Pharmacology. C. Nomenclature and Properties of Calcium-Activated and Sodium-Activated Potassium Channels. Pharmacol Rev, 69 (1): 1-11. [PMID:28267675]
* Kshatri AS, Gonzalez-Hernandez A, Giraldez T. (2018) Physiological Roles and Therapeutic Potential of Ca2+ Activated Potassium Channels in the Nervous System. Front Mol Neurosci, 11: 258. [PMID:30104956]
1. Bhattacharjee A, Joiner WJ, Wu M, Yang Y, Sigworth FJ, Kaczmarek LK. (2003) Slick (Slo2.1), a rapidly-gating sodium-activated potassium channel inhibited by ATP. J Neurosci, 23 (37): 11681-91. [PMID:14684870]
2. Biton B, Sethuramanujam S, Picchione KE, Bhattacharjee A, Khessibi N, Chesney F, Lanneau C, Curet O, Avenet P. (2012) The antipsychotic drug loxapine is an opener of the sodium-activated potassium channel slack (Slo2.2). J Pharmacol Exp Ther, 340 (3): 706-15. [PMID:22171093]
3. Cao Y, Dreixler JC, Roizen JD, Roberts MT, Houamed KM. (2001) Modulation of recombinant small-conductance Ca(2+)-activated K(+) channels by the muscle relaxant chlorzoxazone and structurally related compounds. J Pharmacol Exp Ther, 296 (3): 683-9. [PMID:11181893]
4. Church TW, Weatherall KL, Corrêa SA, Prole DL, Brown JT, Marrion NV. (2015) Preferential assembly of heteromeric small conductance calcium-activated potassium channels. Eur J Neurosci, 41 (3): 305-15. [PMID:25421315]
5. Coleman N, Brown BM, Oliván-Viguera A, Singh V, Olmstead MM, Valero MS, Köhler R, Wulff H. (2014) New positive Ca2+-activated K+ channel gating modulators with selectivity for KCa3.1. Mol Pharmacol, 86 (3): 342-57. [PMID:24958817]
6. Dai L, Garg V, Sanguinetti MC. (2010) Activation of Slo2.1 channels by niflumic acid. J Gen Physiol, 135 (3): 275-95. [PMID:20176855]
7. Fanger CM, Rauer H, Neben AL, Miller MJ, Rauer H, Wulff H, Rosa JC, Ganellin CR, Chandy KG, Cahalan MD. (2001) Calcium-activated potassium channels sustain calcium signaling in T lymphocytes. Selective blockers and manipulated channel expression levels. J Biol Chem, 276 (15): 12249-56. [PMID:11278890]
8. Garg P, Sanguinetti MC. (2012) Structure-activity relationship of fenamates as Slo2.1 channel activators. Mol Pharmacol, 82 (5): 795-802. [PMID:22851714]
9. Jensen BS, Strobaek D, Christophersen P, Jorgensen TD, Hansen C, Silahtaroglu A, Olesen SP, Ahring PK. (1998) Characterization of the cloned human intermediate-conductance Ca2+-activated K+ channel. Am J Physiol, 275 (3): C848-56. [PMID:9730970]
10. Joiner WJ, Wang LY, Tang MD, Kaczmarek LK. (1997) hSK4, a member of a novel subfamily of calcium-activated potassium channels. Proc Natl Acad Sci USA, 94 (20): 11013-8. [PMID:9380751]
11. Jäger H, Adelman JP, Grissmer S. (2000) SK2 encodes the apamin-sensitive Ca(2+)-activated K(+) channels in the human leukemic T cell line, Jurkat. FEBS Lett, 469 (2-3): 196-202. [PMID:10713270]
12. Kaczmarek LK, Aldrich RW, Chandy KG, Grissmer S, Wei AD, Wulff H. (2017) International Union of Basic and Clinical Pharmacology. C. Nomenclature and Properties of Calcium-Activated and Sodium-Activated Potassium Channels. Pharmacol Rev, 69 (1): 1-11. [PMID:28267675]
13. Köhler R, Wulff H, Eichler I, Kneifel M, Neumann D, Knorr A, Grgic I, Kämpfe D, Si H, Wibawa J, Real R, Borner K, Brakemeier S, Orzechowski HD, Reusch HP, Paul M, Chandy KG, Hoyer J. (2003) Blockade of the intermediate-conductance calcium-activated potassium channel as a new therapeutic strategy for restenosis. Circulation, 108 (9): 1119-25. [PMID:12939222]
14. Pedarzani P, McCutcheon JE, Rogge G, Jensen BS, Christophersen P, Hougaard C, Strøbaek D, Stocker M. (2005) Specific enhancement of SK channel activity selectively potentiates the afterhyperpolarizing current I(AHP) and modulates the firing properties of hippocampal pyramidal neurons. J Biol Chem, 280 (50): 41404-11. [PMID:16239218]
15. Pedarzani P, Mosbacher J, Rivard A, Cingolani LA, Oliver D, Stocker M, Adelman JP, Fakler B. (2001) Control of electrical activity in central neurons by modulating the gating of small conductance Ca2+-activated K+ channels. J Biol Chem, 276 (13): 9762-9. [PMID:11134030]
16. Sanchez M, McManus OB. (1996) Paxilline inhibition of the alpha-subunit of the high-conductance calcium-activated potassium channel. Neuropharmacology, 35 (7): 963-8. [PMID:8938726]
17. Shah M, Haylett DG. (2000) The pharmacology of hSK1 Ca2+-activated K+ channels expressed in mammalian cell lines. Br J Pharmacol, 129 (4): 627-30. [PMID:10683185]
18. Stocker JW, De Franceschi L, McNaughton-Smith GA, Corrocher R, Beuzard Y, Brugnara C. (2003) ICA-17043, a novel Gardos channel blocker, prevents sickled red blood cell dehydration in vitro and in vivo in SAD mice. Blood, 101 (6): 2412-8. [PMID:12433690]
19. Stocker M, Hirzel K, D'hoedt D, Pedarzani P. (2004) Matching molecules to function: neuronal Ca2+-activated K+ channels and afterhyperpolarizations. Toxicon, 43 (8): 933-49. [PMID:15208027]
20. Strøbaek D, Jørgensen TD, Christophersen P, Ahring PK, Olesen SP. (2000) Pharmacological characterization of small-conductance Ca(2+)-activated K(+) channels stably expressed in HEK 293 cells. Br J Pharmacol, 129 (5): 991-9. [PMID:10696100]
21. Strøbaek D, Teuber L, Jørgensen TD, Ahring PK, Kjaer K, Hansen RS, Olesen SP, Christophersen P, Skaaning-Jensen B. (2004) Activation of human IK and SK Ca2+ -activated K+ channels by NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime). Biochim Biophys Acta, 1665 (1-2): 1-5. [PMID:15471565]
22. Syme CA, Gerlach AC, Singh AK, Devor DC. (2000) Pharmacological activation of cloned intermediate- and small-conductance Ca(2+)-activated K(+) channels. Am J Physiol, Cell Physiol, 278 (3): C570-81. [PMID:10712246]
23. Tang QY, Zhang Z, Xia XM, Lingle CJ. (2010) Block of mouse Slo1 and Slo3 K+ channels by CTX, IbTX, TEA, 4-AP and quinidine. Channels (Austin), 4 (1): 22-41. [PMID:19934650]
24. Terstappen GC, Pula G, Carignani C, Chen MX, Roncarati R. (2001) Pharmacological characterisation of the human small conductance calcium-activated potassium channel hSK3 reveals sensitivity to tricyclic antidepressants and antipsychotic phenothiazines. Neuropharmacology, 40 (6): 772-83. [PMID:11369031]
25. Weatherall KL, Goodchild SJ, Jane DE, Marrion NV. (2010) Small conductance calcium-activated potassium channels: from structure to function. Prog Neurobiol, 91 (3): 242-55. [PMID:20359520]
26. Wittekindt OH, Visan V, Tomita H, Imtiaz F, Gargus JJ, Lehmann-Horn F, Grissmer S, Morris-Rosendahl DJ. (2004) An apamin- and scyllatoxin-insensitive isoform of the human SK3 channel. Mol Pharmacol, 65 (3): 788-801. [PMID:14978258]
27. Wrighton DC, Muench SP, Lippiat JD. (2015) Mechanism of inhibition of mouse Slo3 (KCa 5.1) potassium channels by quinine, quinidine and barium. Br J Pharmacol, 172 (17): 4355-63. [PMID:26045093]
28. Wulff H, Miller MJ, Hansel W, Grissmer S, Cahalan MD, Chandy KG. (2000) Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: a potential immunosuppressant. Proc Natl Acad Sci USA, 97 (14): 8151-6. [PMID:10884437]
29. Yang B, Gribkoff VK, Pan J, Damagnez V, Dworetzky SI, Boissard CG, Bhattacharjee A, Yan Y, Sigworth FJ, Kaczmarek LK. (2006) Pharmacological activation and inhibition of Slack (Slo2.2) channels. Neuropharmacology, 51 (4): 896-906. [PMID:16876206]
Subcommittee members:
Leonard K. Kaczmarek (Chairperson)
Richard Aldrich
K. George Chandy
Stephan Grissmer
Aguan D. Wei
Heike Wulff |
Other contributors:
George A. Gutman |
Database page citation (select format):
Aldrich R, Chandy KG, Grissmer S, Gutman GA, Kaczmarek LK, Wei AD, Wulff H. Calcium- and sodium-activated potassium channels (KCa, KNa) in GtoPdb v.2023.1. IUPHAR/BPS Guide to Pharmacology CITE. 2023; 2023(1). Available from: https://doi.org/10.2218/gtopdb/F69/2023.1.
Concise Guide to PHARMACOLOGY citation:
Alexander SPH, Mathie AA, Peters JA, Veale EL, Striessnig J, Kelly E, Armstrong JF, Faccenda E, Harding SD, Davies JA et al. (2023) The Concise Guide to PHARMACOLOGY 2023/24: Ion channels. Br J Pharmacol. 180 Suppl 2:S145-S222.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License