IUPHAR/BPS Guide to Pharmacology CITE
https://doi.org/10.2218/gtopdb/F1023/2023.3

E3 ubiquitin ligase components in GtoPdb v.2023.3



Elena Faccenda1 and Robert Layfield2
  1. University of Edinburgh, UK
  2. The University of Nottingham, UK


Abstract

Ubiquitination (a.k.a. ubiquitylation) is a protein post-translational modification that typically requires the sequential action of three enzymes: E1 (ubiquitin-activating enzymes), E2 (ubiquitin-conjugating enzymes), and E3 (ubiquitin ligases) [48]. Ubiquitination of proteins can target them for proteasomal degradation, or modulate cellular processes including cell cycle progression, transcriptional regulation, DNA repair and signal transduction.
E3 ubiquitin ligases, of which there are >600 in humans, are a family of highly heterogeneous proteins and protein complexes that recruit ubiquitin-loaded E2 enzymes to mediate transfer of the ubiquitin molecule from the E2 to protein substrates. Target substrate specificity is determined by a substrate recognition subunit within the E3 complex.
E3 ligases are being exploited as pharmacological targets to facilitate targeted protein degradation (TPD), as an alternative to small molecule inhibitors [5], through the development of proteolysis targeting chimeras (PROTACs) and molecular glues.

Contents

This is a citation summary for E3 ubiquitin ligase components in the Guide to Pharmacology database (GtoPdb). It exists purely as an adjunct to the database to facilitate the recognition of citations to and from the database by citation analyzers. Readers will almost certainly want to visit the relevant sections of the database which are given here under database links.

GtoPdb is an expert-driven guide to pharmacological targets and the substances that act on them. GtoPdb is a reference work which is most usefully represented as an on-line database. As in any publication this work should be appropriately cited, and the papers it cites should also be recognized. This document provides a citation for the relevant parts of the database, and also provides a reference list for the research cited by those parts. For further details see [8].

Please note that the database version for the citations given in GtoPdb are to the most recent preceding version in which the family or its subfamilies and targets were substantially changed. The links below are to the current version. If you need to consult the cited version, rather than the most recent version, please contact the GtoPdb curators.

Database links

E3 ubiquitin ligase components
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=1023
    Enzymes
            Cbl proto-oncogene B
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3234
            cereblon
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3086
            DDB1 and CUL4 associated factor 1
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3244
            F-box protein 3
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3233
            kelch domain containing 2
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3262
            MDM2 proto-oncogene
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3136
            S-phase kinase associated protein 2
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3235
            STIP1 homology and U-box containing protein 1
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3202
            von Hippel-Lindau tumor suppressor
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3204
            zinc finger and BTB domain containing 25
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3254

References

  1. Anton MSC, Buchholz TJ, Lopez-Girona A, Narla RK and Pourdehnad M. (2022) Methods of treating non-hodgkin lymphoma using 2-(2,6-dioxopiperidin-3-yl)-4-((2-fluoro-4-((3-morpholinoazetidin-1-yl)methyl)benzyl)amino)isoindoline-1,3-dione Patent number: US20220324855A1.
  2. Apriamashvili G, Vredevoogd DW, Krijgsman O, Bleijerveld OB, Ligtenberg MA, de Bruijn B, Boshuizen J, Traets JJH, D'Empaire Altimari D and van Vliet A et al.. (2022) Ubiquitin ligase STUB1 destabilizes IFNγ-receptor complex to suppress tumor IFNγ signaling. Nat Commun 13: 1923 [PMID:35395848]
  3. Asatsuma-Okumura T, Ito T and Handa H. (2019) Molecular mechanisms of cereblon-based drugs. Pharmacol Ther 202: 132-139 [PMID:31202702]
  4. Augustin RC, Bao R and Luke JJ. (2023) Targeting Cbl-b in cancer immunotherapy. J Immunother Cancer 11 [PMID:36750253]
  5. Belcher BP, Ward CC and Nomura DK. (2023) Ligandability of E3 Ligases for Targeted Protein Degradation Applications. Biochemistry 62: 588-600 [PMID:34473924]
  6. Benita Y, Cao Z, Giallourakis C, Li C, Gardet A and Xavier RJ. (2010) Gene enrichment profiles reveal T-cell development, differentiation, and lineage-specific transcription factors including ZBTB25 as a novel NF-AT repressor. Blood 115: 5376-84 [PMID:20410506]
  7. Bonazzi S, d'Hennezel E, Beckwith REJ, Xu L, Fazal A, Magracheva A, Ramesh R, Cernijenko A, Antonakos B and Bhang HC et al.. (2023) Discovery and characterization of a selective IKZF2 glue degrader for cancer immunotherapy. Cell Chem Biol 30: 235-247.e12 [PMID:36863346]
  8. Buneman P, Christie G, Davies JA, Dimitrellou R, Harding SD, Pawson AJ, Sharman JL and Wu Y. (2020) Why data citation isn't working, and what to do about it Database 2020 [PMID:32367113]
  9. Cao Z, Li G, Shao Q, Yang G, Zheng L, Zhang T and Zhao Y. (2016) CHIP: A new modulator of human malignant disorders. Oncotarget 7: 29864-74 [PMID:27007160]
  10. Carvajal LA, Neriah DB, Senecal A, Benard L, Thiruthuvanathan V, Yatsenko T, Narayanagari SR, Wheat JC, Todorova TI and Mitchell K et al.. (2018) Dual inhibition of MDMX and MDM2 as a therapeutic strategy in leukemia. Sci Transl Med 10 [PMID:29643228]
  11. Chamberlain PP, Lopez-Girona A, Miller K, Carmel G, Pagarigan B, Chie-Leon B, Rychak E, Corral LG, Ren YJ and Wang M et al.. (2014) Structure of the human Cereblon-DDB1-lenalidomide complex reveals basis for responsiveness to thalidomide analogs. Nat Struct Mol Biol 21: 803-9 [PMID:25108355]
  12. Chardin P, Courtois G, Mattei MG and Gisselbrecht S. (1991) The KUP gene, located on human chromosome 14, encodes a protein with two distant zinc fingers. Nucleic Acids Res 19: 1431-6 [PMID:2027750]
  13. Chen B and Mallampalli R. (2018) Compositions and methods for treating respiratory injury or disease Patent number: US20180071232A.
  14. da Mota VHS, Freire de Melo F, de Brito BB, da Silva FAF and Teixeira KN. (2022) Molecular docking of DS-3032B, a mouse double minute 2 enzyme antagonist with potential for oncology treatment development. World J Clin Oncol 13: 496-504 [PMID:35949428]
  15. Dale B, Anderson C, Park KS, Kaniskan HÜ, Ma A, Shen Y, Zhang C, Xie L, Chen X and Yu X et al.. (2022) Targeting Triple-Negative Breast Cancer by a Novel Proteolysis Targeting Chimera Degrader of Enhancer of Zeste Homolog 2. ACS Pharmacol Transl Sci 5: 491-507 [PMID:35837138]
  16. Del Prete D, Rice RC, Rajadhyaksha AM and D'Adamio L. (2016) Amyloid Precursor Protein (APP) May Act as a Substrate and a Recognition Unit for CRL4CRBN and Stub1 E3 Ligases Facilitating Ubiquitination of Proteins Involved in Presynaptic Functions and Neurodegeneration. J Biol Chem 291: 17209-27 [PMID:27325702]
  17. Ebner P, Versteeg GA and Ikeda F. (2017) Ubiquitin enzymes in the regulation of immune responses. Crit Rev Biochem Mol Biol 52: 425-460 [PMID:28524749]
  18. Fischer ES, Böhm K, Lydeard JR, Yang H, Stadler MB, Cavadini S, Nagel J, Serluca F, Acker V and Lingaraju GM et al.. (2014) Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature 512: 49-53 [PMID:25043012]
  19. Gandhi A, Dimartino J and Chopra R. (2014) Methods for the treatment of locally advanced breast cancer Patent number: WO2014039960A1.
  20. Gandhi AK, Kang J, Havens CG, Conklin T, Ning Y, Wu L, Ito T, Ando H, Waldman MF and Thakurta A et al.. (2014) Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4(CRBN.). Br J Haematol 164: 811-21 [PMID:24328678]
  21. Hagner PR, Man HW, Fontanillo C, Wang M, Couto S, Breider M, Bjorklund C, Havens CG, Lu G and Rychak E et al.. (2015) CC-122, a pleiotropic pathway modifier, mimics an interferon response and has antitumor activity in DLBCL. Blood 126: 779-89 [PMID:26002965]
  22. Han S, Liu ZQ, Chung DC, Paul MS, Garcia-Batres CR, Sayad A, Elford AR, Gold MJ, Grimshaw N and Ohashi PS. (2022) Overproduction of IFNγ by Cbl-b-Deficient CD8+ T Cells Provides Resistance against Regulatory T Cells and Induces Potent Antitumor Immunity. Cancer Immunol Res 10: 437-452 [PMID:35181779]
  23. Hansen JD, Correa M, Nagy MA, Alexander M, Plantevin V, Grant V, Whitefield B, Huang D, Kercher T and Harris R et al.. (2020) Discovery of CRBN E3 Ligase Modulator CC-92480 for the Treatment of Relapsed and Refractory Multiple Myeloma. J Med Chem 63: 6648-6676 [PMID:32130004]
  24. Hartmann MD, Boichenko I, Coles M, Zanini F, Lupas AN and Hernandez Alvarez B. (2014) Thalidomide mimics uridine binding to an aromatic cage in cereblon. J Struct Biol 188: 225-32 [PMID:25448889]
  25. Heim C, Pliatsika D, Mousavizadeh F, Bär K, Hernandez Alvarez B, Giannis A and Hartmann MD. (2019) De-Novo Design of Cereblon (CRBN) Effectors Guided by Natural Hydrolysis Products of Thalidomide Derivatives. J Med Chem 62: 6615-6629 [PMID:31251063]
  26. Higgins JJ, Hao J, Kosofsky BE and Rajadhyaksha AM. (2008) Dysregulation of large-conductance Ca2+-activated K+ channel expression in nonsyndromal mental retardation due to a cereblon p.R419X mutation. Neurogenetics 9: 219-23 [PMID:18414909]
  27. Higgins JJ, Pucilowska J, Lombardi RQ and Rooney JP. (2004) A mutation in a novel ATP-dependent Lon protease gene in a kindred with mild mental retardation. Neurology 63: 1927-31 [PMID:15557513]
  28. Huang HT, Dobrovolsky D, Paulk J, Yang G, Weisberg EL, Doctor ZM, Buckley DL, Cho JH, Ko E and Jang J et al.. (2018) A Chemoproteomic Approach to Query the Degradable Kinome Using a Multi-kinase Degrader. Cell Chem Biol 25: 88-99.e6 [PMID:29129717]
  29. Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, Yamaguchi Y and Handa H. (2010) Identification of a primary target of thalidomide teratogenicity. Science 327: 1345-50 [PMID:20223979]
  30. Ito T and Handa H. (2016) Cereblon and its downstream substrates as molecular targets of immunomodulatory drugs. Int J Hematol 104: 293-9 [PMID:27460676]
  31. Jafari D, Mousavi MJ, Keshavarz Shahbaz S, Jafarzadeh L, Tahmasebi S, Spoor J and Esmaeilzadeh A. (2021) E3 ubiquitin ligase Casitas B lineage lymphoma-b and its potential therapeutic implications for immunotherapy. Clin Exp Immunol 204: 14-31 [PMID:33306199]
  32. Joshi V, Amanullah A, Upadhyay A, Mishra R, Kumar A and Mishra A. (2016) A Decade of Boon or Burden: What Has the CHIP Ever Done for Cellular Protein Quality Control Mechanism Implicated in Neurodegeneration and Aging? Front Mol Neurosci 9: 93 [PMID:27757073]
  33. Kaneshige A, Bai L, Wang M, McEachern D, Meagher JL, Xu R, Kirchhoff PD, Wen B, Sun D and Stuckey JA et al.. (2023) Discovery of a Potent and Selective STAT5 PROTAC Degrader with Strong Antitumor Activity In Vivo in Acute Myeloid Leukemia. J Med Chem 66: 2717-2743 [PMID:36735833]
  34. Karemaker ID and Vermeulen M. (2018) ZBTB2 reads unmethylated CpG island promoters and regulates embryonic stem cell differentiation. EMBO Rep 19 [PMID:29437775]
  35. Kim Y, Seo P, Jeon E, You I, Hwang K, Kim N, Tse J, Bae J, Choi HS and Hinshaw SM et al.. (2023) Targeted kinase degradation via the KLHDC2 ubiquitin E3 ligase. Cell Chem Biol 30: 1414-1420.e5 [PMID:37567174]
  36. Koren I, Timms RT, Kula T, Xu Q, Li MZ and Elledge SJ. (2018) The Eukaryotic Proteome Is Shaped by E3 Ubiquitin Ligases Targeting C-Terminal Degrons. Cell 173: 1622-1635.e14 [PMID:29779948]
  37. Kumar S, Basu M and Ghosh MK. (2021) Chaperone-assisted E3 ligase CHIP: A double agent in cancer Genes & Diseases
  38. Lear TB, Boudreau ÁN, Lockwood KC, Chu E, Camarco DP, Cao Q, Nguyen M, Evankovich JW, Finkel T and Liu Y et al.. (2023) E3 ubiquitin ligase ZBTB25 suppresses beta coronavirus infection through ubiquitination of the main viral protease MPro. J Biol Chem: 105388 [PMID:37890782]
  39. Li ASM, Kimani S, Wilson B, Noureldin M, González-Álvarez H, Mamai A, Hoffer L, Guilinger JP, Zhang Y and von Rechenberg M et al.. (2023) Discovery of Nanomolar DCAF1 Small Molecule Ligands. J Med Chem 66: 5041-5060 [PMID:36948210]
  40. Li D, Yu X, Kottur J, Gong W, Zhang Z, Storey AJ, Tsai YH, Uryu H, Shen Y and Byrum SD et al.. (2022) Discovery of a dual WDR5 and Ikaros PROTAC degrader as an anti-cancer therapeutic. Oncogene 41: 3328-3340 [PMID:35525905]
  41. Li YQ, Lannigan WG, Davoodi S, Daryaee F, Corrionero A, Alfonso P, Rodriguez-Santamaria JA, Wang N, Haley JD and Tonge PJ. (2023) Discovery of Novel Bruton’s Tyrosine Kinase PROTACs with Enhanced Selectivity and Cellular Efficacy Journal of Mediconal Chemistry
  42. Liao G, Yang D, Ma L, Li W, Hu L, Zeng L, Wu P, Duan L and Liu Z. (2018) The development of piperidinones as potent MDM2-P53 protein-protein interaction inhibitors for cancer therapy. Eur J Med Chem 159: 1-9 [PMID:30253242]
  43. Lin HC, Yeh CW, Chen YF, Lee TT, Hsieh PY, Rusnac DV, Lin SY, Elledge SJ, Zheng N and Yen HS. (2018) C-Terminal End-Directed Protein Elimination by CRL2 Ubiquitin Ligases. Mol Cell 70: 602-613.e3 [PMID:29775578]
  44. Lopez-Girona A, Mendy D, Ito T, Miller K, Gandhi AK, Kang J, Karasawa S, Carmel G, Jackson P and Abbasian M et al.. (2012) Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia 26: 2326-35 [PMID:22552008]
  45. Matyskiela ME, Zhang W, Man HW, Muller G, Khambatta G, Baculi F, Hickman M, LeBrun L, Pagarigan B and Carmel G et al.. (2018) A Cereblon Modulator (CC-220) with Improved Degradation of Ikaros and Aiolos. J Med Chem 61: 535-542 [PMID:28425720]
  46. Min J, Mayasundari A, Keramatnia F, Jonchere B, Yang SW, Jarusiewicz J, Actis M, Das S, Young B and Slavish J et al.. (2021) Phenyl-Glutarimides: Alternative Cereblon Binders for the Design of PROTACs. Angew Chem Int Ed Engl 60: 26663-26670 [PMID:34614283]
  47. Momand J, Zambetti GP, Olson DC, George D and Levine AJ. (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69: 1237-45 [PMID:1535557]
  48. Morreale FE and Walden H. (2016) Types of Ubiquitin Ligases. Cell 165: 248-248.e1 [PMID:27015313]
  49. Nabet B, Roberts JM, Buckley DL, Paulk J, Dastjerdi S, Yang A, Leggett AL, Erb MA, Lawlor MA and Souza A et al.. (2018) The dTAG system for immediate and target-specific protein degradation. Nat Chem Biol 14: 431-441 [PMID:29581585]
  50. Ng S, Brueckner AC, Bahmanjah S, Deng Q, Johnston JM, Ge L, Duggal R, Habulihaz B, Barlock B and Ha S et al.. (2022) Discovery and Structure-Based Design of Macrocyclic Peptides Targeting STUB1. J Med Chem [PMID:35853179]
  51. Ng SY, Yoshida N, Christie AL, Ghandi M, Dharia NV, Dempster J, Murakami M, Shigemori K, Morrow SN and Van Scoyk A et al.. (2018) Targetable vulnerabilities in T- and NK-cell lymphomas identified through preclinical models. Nat Commun 9: 2024 [PMID:29789628]
  52. Nguyen TV, Lee JE, Sweredoski MJ, Yang SJ, Jeon SJ, Harrison JS, Yim JH, Lee SG, Handa H and Kuhlman B et al.. (2016) Glutamine Triggers Acetylation-Dependent Degradation of Glutamine Synthetase via the Thalidomide Receptor Cereblon. Mol Cell 61: 809-20 [PMID:26990986]
  53. Pairawan S, Zhao M, Yuca E, Annis A, Evans K, Sutton D, Carvajal L, Ren JG, Santiago S and Guerlavais V et al.. (2021) First in class dual MDM2/MDMX inhibitor ALRN-6924 enhances antitumor efficacy of chemotherapy in TP53 wild-type hormone receptor-positive breast cancer models. Breast Cancer Res 23: 29 [PMID:33663585]
  54. Remillard D, Buckley DL, Paulk J, Brien GL, Sonnett M, Seo HS, Dastjerdi S, Wühr M, Dhe-Paganon S and Armstrong SA et al.. (2017) Degradation of the BAF Complex Factor BRD9 by Heterobifunctional Ligands. Angew Chem Int Ed Engl 56: 5738-5743 [PMID:28418626]
  55. Ries S, Biederer C, Woods D, Shifman O, Shirasawa S, Sasazuki T, McMahon M, Oren M and McCormick F. (2000) Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p19ARF. Cell 103: 321-30 [PMID:11057904]
  56. Rusnac DV, Lin HC, Canzani D, Tien KX, Hinds TR, Tsue AF, Bush MF, Yen HS and Zheng N. (2018) Recognition of the Diglycine C-End Degron by CRL2KLHDC2 Ubiquitin Ligase. Mol Cell 72: 813-822.e4 [PMID:30526872]
  57. Sands AT, Bence NF, Zapf CW, Cohen F, Wang C, Cummins T, Tanaka H, Shunatona H, Cardozo M and Weiss D et al.. (2020) Substituted benzyl-triazole compounds for cbl-b inhibition, and further uses thereof Patent number: WO2020264398A1.
  58. Sasaki M, Kawahara K, Nishio M, Mimori K, Kogo R, Hamada K, Itoh B, Wang J, Komatsu Y and Yang YR et al.. (2011) Regulation of the MDM2-P53 pathway and tumor growth by PICT1 via nucleolar RPL11. Nat Med 17: 944-51 [PMID:21804542]
  59. Sheereen A, Alaamery M, Bawazeer S, Al Yafee Y, Massadeh S and Eyaid W. (2017) A missense mutation in the CRBN gene that segregates with intellectual disability and self-mutilating behaviour in a consanguineous Saudi family. J Med Genet 54: 236-240 [PMID:28143899]
  60. Sun D, Li Z, Rew Y, Gribble M, Bartberger MD, Beck HP, Canon J, Chen A, Chen X and Chow D et al.. (2014) Discovery of AMG 232, a potent, selective, and orally bioavailable MDM2-p53 inhibitor in clinical development. J Med Chem 57: 1454-72 [PMID:24456472]
  61. Tao Y, Remillard D, Vinogradova EV, Yokoyama M, Banchenko S, Schwefel D, Melillo B, Schreiber SL, Zhang X and Cravatt BF. (2022) Targeted Protein Degradation by Electrophilic PROTACs that Stereoselectively and Site-Specifically Engage DCAF1. J Am Chem Soc 144: 18688-18699 [PMID:36170674]
  62. Vu B, Wovkulich P, Pizzolato G, Lovey A, Ding Q, Jiang N, Liu JJ, Zhao C, Glenn K and Wen Y et al.. (2013) Discovery of RG7112: A Small-Molecule MDM2 Inhibitor in Clinical Development. ACS Med Chem Lett 4: 466-9 [PMID:24900694]
  63. Vulpetti A, Holzer P, Schmiedeberg N, Imbach-Weese P, Pissot-Soldermann C, Hollingworth GJ, Radimerski T, Thoma CR, Stachyra TM and Wojtynek M et al.. (2023) Discovery of New Binders for DCAF1, an Emerging Ligase Target in the Targeted Protein Degradation Field. ACS Med Chem Lett 14: 949-954 [PMID:37465299]
  64. Yang J, Li Y, Aguilar A, Liu Z, Yang CY and Wang S. (2019) Simple Structural Modifications Converting a Bona fide MDM2 PROTAC Degrader into a Molecular Glue Molecule: A Cautionary Tale in the Design of PROTAC Degraders. J Med Chem 62: 9471-9487 [PMID:31560543]
  65. Zhang K, Hu K, Li Q, Li M, Gao K, Yang K, Zhao B, Shi XJ, Zhang L and Liu HM. (2023) Discovery of Novel 1,3-Diphenylpyrazine Derivatives as Potent S-Phase Kinase-Associated Protein 2 (Skp2) Inhibitors for the Treatment of Cancer. J Med Chem 66: 7221-7242 [PMID:37204466]