IUPHAR/BPS Guide to Pharmacology CITE
https://doi.org/10.2218/gtopdb/F943/2019.4

Endocannabinoid turnover (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database



Stephen P.H. Alexander1, Patrick Doherty2, Christopher J. Fowler3, Jürg Gertsch4 and Mario van der Stelt5
  1. University of Nottingham, UK
  2. King's College London, UK
  3. University Hospital of Umeå, Sweden
  4. University of Bern, Switzerland
  5. Leiden University, The Netherlands


Abstract

The principle endocannabinoids are 2-acylglycerol esters, such as 2-arachidonoylglycerol (2-AG), and N-acylethanolamines, such as anandamide (N-arachidonoylethanolamine, AEA). The glycerol esters and ethanolamides are synthesised and hydrolysed by parallel, independent pathways. Mechanisms for release and re-uptake of endocannabinoids are unclear, although potent and selective inhibitors of facilitated diffusion of endocannabinoids across cell membranes have been developed [19]. FABP5 (Q01469) has been suggested to act as a canonical intracellular endocannabinoid transporter in vivo [12]. For the generation of 2-arachidonoylglycerol, the key enzyme involved is diacylglycerol lipase (DAGL), whilst several routes for anandamide synthesis have been described, the best characterized of which involves N-acylphosphatidylethanolamine-phospholipase D (NAPE-PLD, [49]). A transacylation enzyme which forms N-acylphosphatidylethanolamines has recently been identified as a cytosolic enzyme, PLA2G4E (Q3MJ16) [43]. In vitro experiments indicate that the endocannabinoids are also substrates for oxidative metabolism via cyclooxygenase, lipoxygenase and cytochrome P450 enzyme activities [4, 16, 51].

Contents

This is a citation summary for Endocannabinoid turnover in the Guide to Pharmacology database (GtoPdb). It exists purely as an adjunct to the database to facilitate the recognition of citations to and from the database by citation analyzers. Readers will almost certainly want to visit the relevant sections of the database which are given here under database links.

GtoPdb is an expert-driven guide to pharmacological targets and the substances that act on them. GtoPdb is a reference work which is most usefully represented as an on-line database. As in any publication this work should be appropriately cited, and the papers it cites should also be recognized. This document provides a citation for the relevant parts of the database, and also provides a reference list for the research cited by those parts.

Please note that the database version for the citations given in GtoPdb are to the most recent preceding version in which the family or its subfamilies and targets were substantially changed. The links below are to the current version. If you need to consult the cited version, rather than the most recent version, please contact the GtoPdb curators.

Database links

Endocannabinoid turnover
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=943
    N-Acylethanolamine turnover
    http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=273
        Enzymes
                NAPE-PLD(N-Acylphosphatidylethanolamine-phospholipase D)
                http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1398
                FAAH(Fatty acid amide hydrolase)
                http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1400
                FAAH2(Fatty acid amide hydrolase-2)
                http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1401
                NAAA(N-Acylethanolamine acid amidase)
                http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1402
    2-Acylglycerol ester turnover
    http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=944
        Enzymes
                DAGLα(Diacylglycerol lipase α)
                http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1396
                DAGLβ(Diacylglycerol lipase β)
                http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1397
                MAGL(Monoacylglycerol lipase)
                http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1399
                ABHD6(αβ-Hydrolase 6)
                http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2919
                αβ-Hydrolase 12
                http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3070

References

  1. Aaltonen N, Savinainen JR, Ribas CR, Rönkkö J, Kuusisto A, Korhonen J, Navia-Paldanius D, Häyrinen J, Takabe P and Käsnänen H et al.. (2013) Piperazine and piperidine triazole ureas as ultrapotent and highly selective inhibitors of monoacylglycerol lipase. Chem. Biol. 20: 379-90 [PMID:23521796]
  2. Ahn K, Johnson DS, Fitzgerald LR, Liimatta M, Arendse A, Stevenson T, Lund ET, Nugent RA, Nomanbhoy TK and Alexander JP et al.. (2007) Novel mechanistic class of fatty acid amide hydrolase inhibitors with remarkable selectivity. Biochemistry 46: 13019-30 [PMID:17949010]
  3. Ahn K, Johnson DS, Mileni M, Beidler D, Long JZ, McKinney MK, Weerapana E, Sadagopan N, Liimatta M and Smith SE et al.. (2009) Discovery and characterization of a highly selective FAAH inhibitor that reduces inflammatory pain. Chem. Biol. 16: 411-20 [PMID:19389627]
  4. Alexander SP and Kendall DA. (2007) The complications of promiscuity: endocannabinoid action and metabolism. Br. J. Pharmacol. 152: 602-23 [PMID:17876303]
  5. Bachovchin DA, Ji T, Li W, Simon GM, Blankman JL, Adibekian A, Hoover H, Niessen S and Cravatt BF. (2010) Superfamily-wide portrait of serine hydrolase inhibition achieved by library-versus-library screening. Proc. Natl. Acad. Sci. U.S.A. 107: 20941-6 [PMID:21084632]
  6. Baggelaar MP, Maccarrone M and van der Stelt M. (2018) 2-Arachidonoylglycerol: A signaling lipid with manifold actions in the brain. Prog. Lipid Res. 71: 1-17 [PMID:29751000]
  7. Bisogno T, Howell F, Williams G, Minassi A, Cascio MG, Ligresti A, Matias I, Schiano-Moriello A, Paul P and Williams EJ et al.. (2003) Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J. Cell Biol. 163: 463-8 [PMID:14610053]
  8. Blankman JL, Simon GM and Cravatt BF. (2007) A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem. Biol. 14: 1347-56 [PMID:18096503]
  9. Bühler KM, Huertas E, Echeverry-Alzate V, Giné E, Moltó E, Montoliu L and López-Moreno JA. (2014) Risky alcohol consumption in young people is associated with the fatty acid amide hydrolase gene polymorphism C385A and affective rating of drug pictures. Mol. Genet. Genomics 289: 279-89 [PMID:24407958]
  10. Cajanus K, Holmström EJ, Wessman M, Anttila V, Kaunisto MA and Kalso E. (2016) Effect of endocannabinoid degradation on pain: role of FAAH polymorphisms in experimental and postoperative pain in women treated for breast cancer. Pain 157: 361-9 [PMID:26808012]
  11. Chang JW, Niphakis MJ, Lum KM, Cognetta 3rd AB, Wang C, Matthews ML, Niessen S, Buczynski MW, Parsons LH and Cravatt BF. (2012) Highly selective inhibitors of monoacylglycerol lipase bearing a reactive group that is bioisosteric with endocannabinoid substrates. Chem. Biol. 19: 579-88 [PMID:22542104]
  12. Chicca A, Nicolussi S, Bartholomäus R, Blunder M, Aparisi Rey A, Petrucci V, Reynoso-Moreno IDC, Viveros-Paredes JM, Dalghi Gens M and Lutz B et al.. (2017) Chemical probes to potently and selectively inhibit endocannabinoid cellular reuptake. Proc. Natl. Acad. Sci. U.S.A. 114: E5006-E5015 [PMID:28584105]
  13. Cisar JS, Weber OD, Clapper JR, Blankman JL, Henry CL, Simon GM, Alexander JP, Jones TK, Ezekowitz RAB and O'Neill GP et al.. (2018) Identification of ABX-1431, a Selective Inhibitor of Monoacylglycerol Lipase and Clinical Candidate for Treatment of Neurological Disorders. J. Med. Chem. 61: 9062-9084 [PMID:30067909]
  14. Cravatt BF, Demarest K, Patricelli MP, Bracey MH, Giang DK, Martin BR and Lichtman AH. (2001) Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc. Natl. Acad. Sci. U.S.A. 98: 9371-6 [PMID:11470906]
  15. Fiskerstrand T, H'mida-Ben Brahim D, Johansson S, M'zahem A, Haukanes BI, Drouot N, Zimmermann J, Cole AJ, Vedeler C and Bredrup C et al.. (2010) Mutations in ABHD12 cause the neurodegenerative disease PHARC: An inborn error of endocannabinoid metabolism. Am. J. Hum. Genet. 87: 410-7 [PMID:20797687]
  16. Fowler CJ. (2007) The contribution of cyclooxygenase-2 to endocannabinoid metabolism and action. Br. J. Pharmacol. 152: 594-601 [PMID:17618306]
  17. Ghafouri N, Tiger G, Razdan RK, Mahadevan A, Pertwee RG, Martin BR and Fowler CJ. (2004) Inhibition of monoacylglycerol lipase and fatty acid amide hydrolase by analogues of 2-arachidonoylglycerol. Br. J. Pharmacol. 143: 774-84 [PMID:15492019]
  18. Giang DK and Cravatt BF. (1997) Molecular characterization of human and mouse fatty acid amide hydrolases. Proc. Natl. Acad. Sci. U.S.A. 94: 2238-42 [PMID:9122178]
  19. Haj-Dahmane S, Shen RY, Elmes MW, Studholme K, Kanjiya MP, Bogdan D, Thanos PK, Miyauchi JT, Tsirka SE and Deutsch DG et al.. (2018) Fatty-acid-binding protein 5 controls retrograde endocannabinoid signaling at central glutamate synapses. Proc. Natl. Acad. Sci. U.S.A. 115: 3482-3487 [PMID:29531087]
  20. Johnson DS, Stiff C, Lazerwith SE, Kesten SR, Fay LK, Morris M, Beidler D, Liimatta MB, Smith SE and Dudley DT et al.. (2011) Discovery of PF-04457845: A Highly Potent, Orally Bioavailable, and Selective Urea FAAH Inhibitor. ACS Med Chem Lett 2: 91-96 [PMID:21666860]
  21. Johnston M, Bhatt SR, Sikka S, Mercier RW, West JM, Makriyannis A, Gatley SJ and Duclos Jr RI. (2012) Assay and inhibition of diacylglycerol lipase activity. Bioorg. Med. Chem. Lett. 22: 4585-92 [PMID:22738638]
  22. Kamat SS, Camara K, Parsons WH, Chen DH, Dix MM, Bird TD, Howell AR and Cravatt BF. (2015) Immunomodulatory lysophosphatidylserines are regulated by ABHD16A and ABHD12 interplay. Nat. Chem. Biol. 11: 164-71 [PMID:25580854]
  23. Karbarz MJ, Luo L, Chang L, Tham CS, Palmer JA, Wilson SJ, Wennerholm ML, Brown SM, Scott BP and Apodaca RL et al.. (2009) Biochemical and biological properties of 4-(3-phenyl-[1,2,4] thiadiazol-5-yl)-piperazine-1-carboxylic acid phenylamide, a mechanism-based inhibitor of fatty acid amide hydrolase. Anesth. Analg. 108: 316-29 [PMID:19095868]
  24. Keith JM, Apodaca R, Tichenor M, Xiao W, Jones W, Pierce J, Seierstad M, Palmer J, Webb M and Karbarz M et al.. (2012) Aryl Piperazinyl Ureas as Inhibitors of Fatty Acid Amide Hydrolase (FAAH) in Rat, Dog, and Primate. ACS Med Chem Lett 3: 823-7 [PMID:24900385]
  25. Keith JM, Apodaca R, Xiao W, Seierstad M, Pattabiraman K, Wu J, Webb M, Karbarz MJ, Brown S and Wilson S et al.. (2008) Thiadiazolopiperazinyl ureas as inhibitors of fatty acid amide hydrolase. Bioorg. Med. Chem. Lett. 18: 4838-43 [PMID:18693015]
  26. Keith JM and Liu J. (2011) Modulators of fatty acid amide hydrolase. Patent number: WO2011139951 A1.
  27. Kiss LE et al.. (2010) Pharmaceutical compounds. Patent number: WO2010074588 A2.
  28. Kiss LE, Ferreira HS, Beliaev A, Torrao L and Bonafacio MJ Learmonth DA.. (2011) Design, synthesis, and structure–activity relationships of 1,3,4-oxadiazol-2(3H)-ones as novel FAAH inhibitors. MedChemComm. 2: 889-894
  29. Knight MA, Hernandez D, Diede SJ, Dauwerse HG, Rafferty I, van de Leemput J, Forrest SM, Gardner RJ, Storey E and van Ommen GJ et al.. (2008) A duplication at chromosome 11q12.2-11q12.3 is associated with spinocerebellar ataxia type 20. Hum. Mol. Genet. 17: 3847-53 [PMID:18801880]
  30. Li W, Blankman JL and Cravatt BF. (2007) A functional proteomic strategy to discover inhibitors for uncharacterized hydrolases. J. Am. Chem. Soc. 129: 9594-5 [PMID:17629278]
  31. Lim ET, Raychaudhuri S, Sanders SJ, Stevens C, Sabo A, MacArthur DG, Neale BM, Kirby A, Ruderfer DM and Fromer M et al.. (2013) Rare complete knockouts in humans: population distribution and significant role in autism spectrum disorders. Neuron 77: 235-42 [PMID:23352160]
  32. Liu Q, Tonai T and Ueda N. (2002) Activation of N-acylethanolamine-releasing phospholipase D by polyamines. Chem. Phys. Lipids 115: 77-84 [PMID:12047899]
  33. Long JZ, Li W, Booker L, Burston JJ, Kinsey SG, Schlosburg JE, Pavón FJ, Serrano AM, Selley DE and Parsons LH et al.. (2009) Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat. Chem. Biol. 5: 37-44 [PMID:19029917]
  34. Long JZ, Nomura DK, Vann RE, Walentiny DM, Booker L, Jin X, Burston JJ, Sim-Selley LJ, Lichtman AH and Wiley JL et al.. (2009) Dual blockade of FAAH and MAGL identifies behavioral processes regulated by endocannabinoid crosstalk in vivo. Proc. Natl. Acad. Sci. U.S.A. 106: 20270-5 [PMID:19918051]
  35. M NK, V B S C T, G K V, B CS, Guntupalli S and J S B. (2016) Molecular characterization of human ABHD2 as TAG lipase and ester hydrolase. Biosci. Rep. 36: [PMID:27247428]
  36. Marrs WR, Blankman JL, Horne EA, Thomazeau A, Lin YH, Coy J, Bodor AL, Muccioli GG, Hu SS and Woodruff G et al.. (2010) The serine hydrolase ABHD6 controls the accumulation and efficacy of 2-AG at cannabinoid receptors. Nat. Neurosci. 13: 951-7 [PMID:20657592]
  37. Migliore M, Habrant D, Sasso O, Albani C, Bertozzi SM, Armirotti A, Piomelli D and Scarpelli R. (2016) Potent multitarget FAAH-COX inhibitors: Design and structure-activity relationship studies. Eur J Med Chem 109: 216-37 [PMID:26774927]
  38. Migliore M, Pontis S, Fuentes de Arriba AL, Realini N, Torrente E, Armirotti A, Romeo E, Di Martino S, Russo D and Pizzirani D et al.. (2016) Second-Generation Non-Covalent NAAA Inhibitors are Protective in a Model of Multiple Sclerosis. Angew. Chem. Int. Ed. Engl. 55: 11193-7 [PMID:27404798]
  39. Miller MR, Mannowetz N, Iavarone AT, Safavi R, Gracheva EO, Smith JF, Hill RZ, Bautista DM, Kirichok Y and Lishko PV. (2016) Unconventional endocannabinoid signaling governs sperm activation via the sex hormone progesterone. Science 352: 555-9 [PMID:26989199]
  40. Navia-Paldanius D, Savinainen JR and Laitinen JT. (2012) Biochemical and pharmacological characterization of human α/β-hydrolase domain containing 6 (ABHD6) and 12 (ABHD12). J. Lipid Res. 53: 2413-24 [PMID:22969151]
  41. Niphakis MJ, Cognetta 3rd AB, Chang JW, Buczynski MW, Parsons LH, Byrne F, Burston JJ, Chapman V and Cravatt BF. (2013) Evaluation of NHS carbamates as a potent and selective class of endocannabinoid hydrolase inhibitors. ACS Chem Neurosci 4: 1322-32 [PMID:23731016]
  42. Nuzzi A, Fiasella A, Ortega JA, Pagliuca C, Ponzano S, Pizzirani D, Bertozzi SM, Ottonello G, Tarozzo G and Reggiani A et al.. (2016) Potent α-amino-β-lactam carbamic acid ester as NAAA inhibitors. Synthesis and structure-activity relationship (SAR) studies. Eur J Med Chem 111: 138-59 [PMID:26866968]
  43. Ogura Y, Parsons WH, Kamat SS and Cravatt BF. (2016) A calcium-dependent acyltransferase that produces N-acyl phosphatidylethanolamines. Nat. Chem. Biol. 12: 669-71 [PMID:27399000]
  44. Parkkari T, Haavikko R, Laitinen T, Navia-Paldanius D, Rytilahti R, Vaara M, Lehtonen M, Alakurtti S, Yli-Kauhaluoma J and Nevalainen T et al.. (2014) Discovery of triterpenoids as reversible inhibitors of α/β-hydrolase domain containing 12 (ABHD12). PLoS ONE 9: e98286 [PMID:24879289]
  45. Petersen G and Hansen HS. (1999) N-acylphosphatidylethanolamine-hydrolysing phospholipase D lacks the ability to transphosphatidylate. FEBS Lett. 455: 41-4 [PMID:10428468]
  46. Ribeiro A, Pontis S, Mengatto L, Armirotti A, Chiurchiù V, Capurro V, Fiasella A, Nuzzi A, Romeo E and Moreno-Sanz G et al.. (2015) A Potent Systemically Active N-Acylethanolamine Acid Amidase Inhibitor that Suppresses Inflammation and Human Macrophage Activation. ACS Chem. Biol. 10: 1838-46 [PMID:25874594]
  47. Roughley S, Walls S, Hart T, Parsons R, Brough P, Graham C and Macias A. (2009) Azetidine derivatives. Patent number: WO2009109743 A1.
  48. Savinainen JR, Saario SM and Laitinen JT. (2012) The serine hydrolases MAGL, ABHD6 and ABHD12 as guardians of 2-arachidonoylglycerol signalling through cannabinoid receptors. Acta Physiol (Oxf) 204: 267-76 [PMID:21418147]
  49. Simon GM and Cravatt BF. (2010) Characterization of mice lacking candidate N-acyl ethanolamine biosynthetic enzymes provides evidence for multiple pathways that contribute to endocannabinoid production in vivo. Mol Biosyst 6: 1411-8 [PMID:20393650]
  50. Sirrs S, van Karnebeek CD, Peng X, Shyr C, Tarailo-Graovac M, Mandal R, Testa D, Dubin D, Carbonetti G and Glynn SE et al.. (2015) Defects in fatty acid amide hydrolase 2 in a male with neurologic and psychiatric symptoms. Orphanet J Rare Dis 10: 38 [PMID:25885783]
  51. Snider NT, Walker VJ and Hollenberg PF. (2010) Oxidation of the endogenous cannabinoid arachidonoyl ethanolamide by the cytochrome P450 monooxygenases: physiological and pharmacological implications. Pharmacol. Rev. 62: 136-54 [PMID:20133390]
  52. Solorzano C, Zhu C, Battista N, Astarita G, Lodola A, Rivara S, Mor M, Russo R, Maccarrone M and Antonietti F et al.. (2009) Selective N-acylethanolamine-hydrolyzing acid amidase inhibition reveals a key role for endogenous palmitoylethanolamide in inflammation. Proc. Natl. Acad. Sci. U.S.A. 106: 20966-71 [PMID:19926854]
  53. Tanaka M, Moran S, Wen J, Affram K, Chen T, Symes AJ and Zhang Y. (2017) WWL70 attenuates PGE2 production derived from 2-arachidonoylglycerol in microglia by ABHD6-independent mechanism. J Neuroinflammation 14: 7 [PMID:28086912]
  54. Thorel MF, Krichevsky M and Lévy-Frébault VV. (1990) Numerical taxonomy of mycobactin-dependent mycobacteria, emended description of Mycobacterium avium, and description of Mycobacterium avium subsp. avium subsp. nov., Mycobacterium avium subsp. paratuberculosis subsp. nov., and Mycobacterium avium subsp. silvaticum subsp. nov. Int. J. Syst. Bacteriol. 40: 254-60 [PMID:2397193]
  55. Tsuboi K, Hilligsmann C, Vandevoorde S, Lambert DM and Ueda N. (2004) N-cyclohexanecarbonylpentadecylamine: a selective inhibitor of the acid amidase hydrolysing N-acylethanolamines, as a tool to distinguish acid amidase from fatty acid amide hydrolase. Biochem. J. 379: 99-106 [PMID:14686878]
  56. Tsuboi K, Ikematsu N, Uyama T, Deutsch DG, Tokumura A and Ueda N. (2013) Biosynthetic pathways of bioactive N-acylethanolamines in brain. CNS Neurol Disord Drug Targets 12: 7-16 [PMID:23394527]
  57. Tuo W, Leleu-Chavain N, Spencer J, Sansook S, Millet R and Chavatte P. (2017) Therapeutic Potential of Fatty Acid Amide Hydrolase, Monoacylglycerol Lipase, and N-Acylethanolamine Acid Amidase Inhibitors. J. Med. Chem. 60: 4-46 [PMID:27766867]
  58. Ueda N, Yamanaka K and Yamamoto S. (2001) Purification and characterization of an acid amidase selective for N-palmitoylethanolamine, a putative endogenous anti-inflammatory substance. J. Biol. Chem. 276: 35552-7 [PMID:11463796]
  59. van Esbroeck ACM, Janssen APA, Cognetta 3rd AB, Ogasawara D, Shpak G, van der Kroeg M, Kantae V, Baggelaar MP, de Vrij FMS and Deng H et al.. (2017) Activity-based protein profiling reveals off-target proteins of the FAAH inhibitor BIA 10-2474. Science 356: 1084-1087 [PMID:28596366]
  60. Wan M, Cravatt BF, Ring HZ, Zhang X and Francke U. (1998) Conserved chromosomal location and genomic structure of human and mouse fatty-acid amide hydrolase genes and evaluation of clasper as a candidate neurological mutation. Genomics 54: 408-14 [PMID:9878243]
  61. Wei BQ, Mikkelsen TS, McKinney MK, Lander ES and Cravatt BF. (2006) A second fatty acid amide hydrolase with variable distribution among placental mammals. J. Biol. Chem. 281: 36569-78 [PMID:17015445]
  62. Whibley AC, Plagnol V, Tarpey PS, Abidi F, Fullston T, Choma MK, Boucher CA, Shepherd L, Willatt L and Parkin G et al.. (2010) Fine-scale survey of X chromosome copy number variants and indels underlying intellectual disability. Am. J. Hum. Genet. 87: 173-88 [PMID:20655035]
  63. Xie S, Borazjani A, Hatfield MJ, Edwards CC, Potter PM and Ross MK. (2010) Inactivation of lipid glyceryl ester metabolism in human THP1 monocytes/macrophages by activated organophosphorus insecticides: role of carboxylesterases 1 and 2. Chem. Res. Toxicol. 23: 1890-904 [PMID:21049984]