IUPHAR/BPS Guide to Pharmacology CITE
https://doi.org/10.2218/gtopdb/F977/2025.4

Orai channels in GtoPdb v.2025.4



Hussein N. Rubaiy1
  1. Karolinska Institutet, Sweden


Abstract

Orai channels are pore forming proteins which underlie calcium release-activated calcium (CRAC) channels. In numerous cell types, calcium influx is predominantly governed by store-operated calcium channels (SOCs). The process of store-operated calcium entry (SOCE) is orchestrated through the concerted interaction of two essential molecular components: the pore-forming Orai proteins (Orai1-3) and the endoplasmic reticulum calcium-sensing stromal interaction molecules (STIM1 and STIM2) [25].

Contents

This is a citation summary for Orai channels in the Guide to Pharmacology database (GtoPdb). It exists purely as an adjunct to the database to facilitate the recognition of citations to and from the database by citation analyzers. Readers will almost certainly want to visit the relevant sections of the database which are given here under database links.

GtoPdb is an expert-driven guide to pharmacological targets and the substances that act on them. GtoPdb is a reference work which is most usefully represented as an on-line database. As in any publication this work should be appropriately cited, and the papers it cites should also be recognized. This document provides a citation for the relevant parts of the database, and also provides a reference list for the research cited by those parts. For further details see [3].

Please note that the database version for the citations given in GtoPdb are to the most recent preceding version in which the family or its subfamilies and targets were substantially changed. The links below are to the current version. If you need to consult the cited version, rather than the most recent version, please contact the GtoPdb curators.

Database links

Orai channels
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=977
    Channels and Subunits
            Orai1
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2964
            Orai2
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2965
            Orai3
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2966

References

  1. Bartoli F, Bailey MA, Rode B, Mateo P, Antigny F, Bedouet K, Gerbaud P, Gosain R, Plante J and Norman K et al.. (2020) Orai1 Channel Inhibition Preserves Left Ventricular Systolic Function and Normal Ca2+ Handling After Pressure Overload. Circulation 141: 199-216 [PMID:31906693]
  2. Bruen C, Miller J, Wilburn J, Mackey C, Bollen TL, Stauderman K and Hebbar S. (2021) Auxora for the Treatment of Patients With Acute Pancreatitis and Accompanying Systemic Inflammatory Response Syndrome: Clinical Development of a Calcium Release-Activated Calcium Channel Inhibitor. Pancreas 50: 537-543 [PMID:33939666]
  3. Buneman P, Christie G, Davies JA, Dimitrellou R, Harding SD, Pawson AJ, Sharman JL and Wu Y. (2020) Why data citation isn't working, and what to do about it Database 2020 [PMID:32367113]
  4. Chang WC. (2006) Store-operated calcium channels and pro-inflammatory signals. Acta Pharmacol Sin 27: 813-20 [PMID:16787563]
  5. Di Capite JL, Bates GJ and Parekh AB. (2011) Mast cell CRAC channel as a novel therapeutic target in allergy. Curr Opin Allergy Clin Immunol 11: 33-8 [PMID:21150433]
  6. Feske S. (2011) Immunodeficiency due to defects in store-operated calcium entry. Ann N Y Acad Sci 1238: 74-90 [PMID:22129055]
  7. Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M and Rao A. (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441: 179-85 [PMID:16582901]
  8. Feske S, Müller JM, Graf D, Kroczek RA, Dräger R, Niemeyer C, Baeuerle PA, Peter HH and Schlesier M. (1996) Severe combined immunodeficiency due to defective binding of the nuclear factor of activated T cells in T lymphocytes of two male siblings. Eur J Immunol 26: 2119-26 [PMID:8814256]
  9. Feske S, Wulff H and Skolnik EY. (2015) Ion channels in innate and adaptive immunity. Annu Rev Immunol 33: 291-353 [PMID:25861976]
  10. Gwack Y, Srikanth S, Feske S, Cruz-Guilloty F, Oh-hora M, Neems DS, Hogan PG and Rao A. (2007) Biochemical and functional characterization of Orai proteins. J Biol Chem 282: 16232-43 [PMID:17293345]
  11. Hogan PG, Lewis RS and Rao A. (2010) Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu Rev Immunol 28: 491-533 [PMID:20307213]
  12. Hoth M and Penner R. (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355: 353-6 [PMID:1309940]
  13. Khedkar NR, Irlapatti NR, Dadke D, Kanoje V, Shaikh Z, Karche V, Shinde V, Deshmukh G, Patil A and Jachak S et al.. (2021) Discovery of a Novel Potent and Selective Calcium Release-Activated Calcium Channel Inhibitor: 2,6-Difluoro-N-(2'-methyl-3'-(4-methyl-5-oxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)-[1,1'-biphenyl]-4-yl)benzamide. Structure-Activity Relationship and Preclinical Characterization. J Med Chem 64: 17004-17030 [PMID:34843241]
  14. Komai T, Kimura T, Baba D, Onodera Y, Tanaka K, Kagari T, Aki A and Nagaoka N. (2017) Anti-Orai1 Antibody Patent number: US20170226203A1. Assignee: Daiichi Sankyo Co Ltd. Priority date: 07/08/2014. Publication date: 10/08/2017.
  15. Le Deist F, Hivroz C, Partiseti M, Thomas C, Buc HA, Oleastro M, Belohradsky B, Choquet D and Fischer A. (1995) A primary T-cell immunodeficiency associated with defective transmembrane calcium influx. Blood 85: 1053-62 [PMID:7531512]
  16. Lewis RS and Cahalan MD. (1989) Mitogen-induced oscillations of cytosolic Ca2+ and transmembrane Ca2+ current in human leukemic T cells. Cell Regul 1: 99-112 [PMID:2519622]
  17. Liardo E, Pham AT, Ghilardi AF, Zhelay T, Szteyn K, Gandi NL, Ekkati A, Koerner S, Kozak JA and Sun L. (2024) Discovery of selective Orai channel blockers bearing an indazole or a pyrazole scaffold. Eur J Med Chem 278: 116805 [PMID:39232360]
  18. Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell Jr JE and Meyer T. (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15: 1235-41 [PMID:16005298]
  19. McCarl CA, Picard C, Khalil S, Kawasaki T, Röther J, Papolos A, Kutok J, Hivroz C, Ledeist F and Plogmann K et al.. (2009) ORAI1 deficiency and lack of store-operated Ca2+ entry cause immunodeficiency, myopathy, and ectodermal dysplasia. J Allergy Clin Immunol 124: 1311-1318.e7 [PMID:20004786]
  20. McNally BA, Somasundaram A, Yamashita M and Prakriya M. (2012) Gated regulation of CRAC channel ion selectivity by STIM1. Nature 482: 241-5 [PMID:22278058]
  21. Muik M, Frischauf I, Derler I, Fahrner M, Bergsmann J, Eder P, Schindl R, Hesch C, Polzinger B and Fritsch R et al.. (2008) Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J Biol Chem 283: 8014-22 [PMID:18187424]
  22. Partiseti M, Le Deist F, Hivroz C, Fischer A, Korn H and Choquet D. (1994) The calcium current activated by T cell receptor and store depletion in human lymphocytes is absent in a primary immunodeficiency. J Biol Chem 269: 32327-35 [PMID:7798233]
  23. Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A and Hogan PG. (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443: 230-3 [PMID:16921383]
  24. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL and Cahalan MD et al.. (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169: 435-45 [PMID:15866891]
  25. Rubaiy HN. (2023) ORAI Calcium Channels: Regulation, Function, Pharmacology, and Therapeutic Targets. Pharmaceuticals (Basel) 16 [PMID:37259313]
  26. Shaw PJ and Feske S. (2012) Regulation of lymphocyte function by ORAI and STIM proteins in infection and autoimmunity. J Physiol (Lond.) 590: 4157-67 [PMID:22615435]
  27. Stauderman KA. (2018) CRAC channels as targets for drug discovery and development. Cell Calcium 74: 147-159 [PMID:30075400]
  28. Thompson JL, Mignen O and Shuttleworth TJ. (2009) The Orai1 severe combined immune deficiency mutation and calcium release-activated Ca2+ channel function in the heterozygous condition. J Biol Chem 284: 6620-6 [PMID:19075015]
  29. Tian C, Du L, Zhou Y and Li M. (2016) Store-operated CRAC channel inhibitors: opportunities and challenges. Future Med Chem 8: 817-32 [PMID:27149324]
  30. Tsvilovskyy V, Solís-López A, Schumacher D, Medert R, Roers A, Kriebs U and Freichel M. (2018) Deletion of Orai2 augments endogenous CRAC currents and degranulation in mast cells leading to enhanced anaphylaxis. Cell Calcium 71: 24-33 [PMID:29604961]
  31. Vaeth M and Feske S. (2018) Ion channelopathies of the immune system. Curr Opin Immunol 52: 39-50 [PMID:29635109]
  32. Vaeth M, Yang J, Yamashita M, Zee I, Eckstein M, Knosp C, Kaufmann U, Karoly Jani P, Lacruz RS and Flockerzi V et al.. (2017) ORAI2 modulates store-operated calcium entry and T cell-mediated immunity. Nat Commun 8: 14714 [PMID:28294127]
  33. Velicelebi G, Stauderman K, Dunn M and Roos J. (2016) Pancreatitis treatment Patent number: WO2016138472A1. Assignee: Calcimedica, Inc.. Priority date: 27/02/2015. Publication date: 01/09/2016.
  34. Williams RT, Manji SS, Parker NJ, Hancock MS, Van Stekelenburg L, Eid JP, Senior PV, Kazenwadel JS, Shandala T and Saint R et al.. (2001) Identification and characterization of the STIM (stromal interaction molecule) gene family: coding for a novel class of transmembrane proteins. Biochem J 357: 673-85 [PMID:11463338]
  35. Zhang HZ, Xu XL, Chen HY, Ali S, Wang D, Yu JW, Xu T and Nan FJ. (2015) Discovery and structural optimization of 1-phenyl-3-(1-phenylethyl)urea derivatives as novel inhibitors of CRAC channel. Acta Pharmacol Sin 36: 1137-44 [PMID:26256403]
  36. Zweifach A and Lewis RS. (1993) Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc Natl Acad Sci USA 90: 6295-9 [PMID:8392195]