IUPHAR/BPS Guide to Pharmacology CITE
https://doi.org/10.2218/gtopdb/F327/2025.3

Type XIII RTKs: Ephrin receptor family in GtoPdb v.2025.3



Chloe J. Peach1
  1. University of Nottingham, UK


Abstract

Ephrin receptors are a family of 15 RTKs - the largest family of RTKs - with two identified subfamilies (EphA and EphB), which have a role in the regulation of neuronal development, cell migration, patterning and angiogenesis. Their ligands are membrane-associated proteins, thought to be glycosylphosphatidylinositol-linked for EphA (ephrin-A1 , ephrin-A2, ephrin-A3, ephrin-A4 and ephrin-A5) and transmembrane proteins for Ephrin B (ENSFM00250000002014: ephrin-B1, ephrin-B2 and ephrin-B3). Ephrin-A3 and ephrin-B3 have also been shown to interact with heparan sulphate proteoglycans [22].

Contents

This is a citation summary for Type XIII RTKs: Ephrin receptor family in the Guide to Pharmacology database (GtoPdb). It exists purely as an adjunct to the database to facilitate the recognition of citations to and from the database by citation analyzers. Readers will almost certainly want to visit the relevant sections of the database which are given here under database links.

GtoPdb is an expert-driven guide to pharmacological targets and the substances that act on them. GtoPdb is a reference work which is most usefully represented as an on-line database. As in any publication this work should be appropriately cited, and the papers it cites should also be recognized. This document provides a citation for the relevant parts of the database, and also provides a reference list for the research cited by those parts. For further details see [5].

Please note that the database version for the citations given in GtoPdb are to the most recent preceding version in which the family or its subfamilies and targets were substantially changed. The links below are to the current version. If you need to consult the cited version, rather than the most recent version, please contact the GtoPdb curators.

Database links

Type XIII RTKs: Ephrin receptor family
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=327
Introduction to Type XIII RTKs: Ephrin receptor family
https://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=327
    Receptors
            EphA1(EPH receptor A1)
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1821
            EphA2(EPH receptor A2)
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1822
            EphA3(EPH receptor A3)
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1823
            EphA4(EPH receptor A4)
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1824
            EphA5(EPH receptor A5)
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1825
            EphA6(EPH receptor A6)
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1826
            EphA7(EPH receptor A7)
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1827
            EphA8(EPH receptor A8)
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1828
            EphA10(EPH receptor A10)
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1829
            EphB1(EPH receptor B1)
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1830
            EphB2(EPH receptor B2)
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1831
            EphB3(EPH receptor B3)
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1832
            EphB4(EPH receptor B4)
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1833
            EphB6(EPH receptor B6)
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1834

References

  1. Amyere M, Revencu N, Helaers R, Pairet E, Baselga E, Cordisco M, Chung W, Dubois J, Lacour JP and Martorell L et al.. (2017) Germline Loss-of-Function Mutations in EPHB4 Cause a Second Form of Capillary Malformation-Arteriovenous Malformation (CM-AVM2) Deregulating RAS-MAPK Signaling. Circulation 136: 1037-1048 [PMID:28687708]
  2. Anastassiadis T, Deacon SW, Devarajan K, Ma H and Peterson JR. (2011) Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nat Biotechnol 29: 1039-45 [PMID:22037377]
  3. Bai J, Wang YJ, Liu L and Zhao YL. (2014) Ephrin B2 and EphB4 selectively mark arterial and venous vessels in cerebral arteriovenous malformation. J Int Med Res 42: 405-15 [PMID:24517927]
  4. Bowden TA, Aricescu AR, Nettleship JE, Siebold C, Rahman-Huq N, Owens RJ, Stuart DI and Jones EY. (2009) Structural plasticity of eph receptor A4 facilitates cross-class ephrin signaling. Structure 17: 1386-97 [PMID:19836338]
  5. Buneman P, Christie G, Davies JA, Dimitrellou R, Harding SD, Pawson AJ, Sharman JL and Wu Y. (2020) Why data citation isn't working, and what to do about it Database 2020 [PMID:32367113]
  6. Chen Y, Zhang H and Zhang Y. (2019) Targeting receptor tyrosine kinase EphB4 in cancer therapy. Semin Cancer Biol 56: 37-46 [PMID:28993206]
  7. Chrencik JE, Brooun A, Recht MI, Kraus ML, Koolpe M, Kolatkar AR, Bruce RH, Martiny-Baron G, Widmer H and Pasquale EB et al.. (2006) Structure and thermodynamic characterization of the EphB4/Ephrin-B2 antagonist peptide complex reveals the determinants for receptor specificity. Structure 14: 321-30 [PMID:16472751]
  8. Chrencik JE, Brooun A, Recht MI, Nicola G, Davis LK, Abagyan R, Widmer H, Pasquale EB and Kuhn P. (2007) Three-dimensional structure of the EphB2 receptor in complex with an antagonistic peptide reveals a novel mode of inhibition. J Biol Chem 282: 36505-13 [PMID:17897949]
  9. Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK and Zarrinkar PP. (2011) Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol 29: 1046-51 [PMID:22037378]
  10. Ferguson BD, Liu R, Rolle CE, Tan YH, Krasnoperov V, Kanteti R, Tretiakova MS, Cervantes GM, Hasina R and Hseu RD et al.. (2013) The EphB4 receptor tyrosine kinase promotes lung cancer growth: a potential novel therapeutic target. PLoS ONE 8: e67668 [PMID:23844053]
  11. Ferrari FR, Giorgio C, Zappia A, Ballabeni V, Bertoni S, Barocelli E, Scalvini L, Galvani F, Mor M and Lodola A et al.. (2023) Pharmacological characterization of second generation FXR agonists as effective EphA2 antagonists: A successful application of target hopping approach. Biochem Pharmacol 209: 115452 [PMID:36792038]
  12. Gao Y, Davies SP, Augustin M, Woodward A, Patel UA, Kovelman R and Harvey KJ. (2013) A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery. Biochem J 451: 313-28 [PMID:23398362]
  13. Genander M and Frisén J. (2010) Ephrins and Eph receptors in stem cells and cancer. Curr Opin Cell Biol 22: 611-6 [PMID:20810264]
  14. Gendreau SB, Ventura R, Keast P, Laird AD, Yakes FM, Zhang W, Bentzien F, Cancilla B, Lutman J and Chu F et al.. (2007) Inhibition of the T790M gatekeeper mutant of the epidermal growth factor receptor by EXEL-7647. Clin Cancer Res 13: 3713-23 [PMID:17575237]
  15. Hart AC, Abell L, Guo J, Mertzman ME, Padmanabha R, Macor JE, Chaudhry C, Lu H, O'Malley K and Shaw PJ et al.. (2019) Identification of RIPK3 Type II Inhibitors Using High-Throughput Mechanistic Studies in Hit Triage ACS Med Chem Lett
  16. Himanen JP, Yermekbayeva L, Janes PW, Walker JR, Xu K, Atapattu L, Rajashankar KR, Mensinga A, Lackmann M and Nikolov DB et al.. (2010) Architecture of Eph receptor clusters. Proc Natl Acad Sci USA 107: 10860-5 [PMID:20505120]
  17. Incerti M, Tognolini M, Russo S, Pala D, Giorgio C, Hassan-Mohamed I, Noberini R, Pasquale EB, Vicini P and Piersanti S et al.. (2013) Amino acid conjugates of lithocholic acid as antagonists of the EphA2 receptor. J Med Chem 56: 2936-47 [PMID:23489211]
  18. Kania A and Klein R. (2016) Mechanisms of ephrin-Eph signalling in development, physiology and disease. Nat Rev Mol Cell Biol 17: 240-56 [PMID:26790531]
  19. Kawasaki J, Aegerter S, Fevurly RD, Mammoto A, Mammoto T, Sahin M, Mably JD, Fishman SJ and Chan J. (2014) RASA1 functions in EPHB4 signaling pathway to suppress endothelial mTORC1 activity. J Clin Invest 124: 2774-84 [PMID:24837431]
  20. Lafleur K, Huang D, Zhou T, Caflisch A and Nevado C. (2009) Structure-based optimization of potent and selective inhibitors of the tyrosine kinase erythropoietin producing human hepatocellular carcinoma receptor B4 (EphB4). J Med Chem 52: 6433-46 [PMID:19788238]
  21. Li C, Shan Y, Sun Y, Si R, Liang L, Pan X, Wang B and Zhang J. (2017) Discovery of novel anti-angiogenesis agents. Part 7: Multitarget inhibitors of VEGFR-2, TIE-2 and EphB4. Eur J Med Chem 141: 506-518 [PMID:29102175]
  22. Lisabeth EM, Falivelli G and Pasquale EB. (2013) Eph receptor signaling and ephrins. Cold Spring Harb Perspect Biol 5 [PMID:24003208]
  23. Luehrsen K, Martinez D, Yi C, Bebbington CR and Yarranton GT.. (2014) Antibodies to EphA3. Patent number: US8664365 B2. Assignee: Kalobios Pharmaceuticals, Inc.. Priority date: 14/08/2009. Publication date: 04/03/2014.
  24. Machrouhi F, Ouhamou N, Laderoute K, Calaoagan J, Bukhtiyarova M, Ehrlich PJ and Klon AE. (2010) The rational design of a novel potent analogue of the 5'-AMP-activated protein kinase inhibitor compound C with improved selectivity and cellular activity. Bioorg Med Chem Lett 20: 6394-9 [PMID:20932747]
  25. Merchant AA, Jorapur A, McManus A, Liu R, Krasnoperov V, Chaudhry P, Singh M, Harton L, Agajanian M and Kim M et al.. (2017) EPHB4 is a therapeutic target in AML and promotes leukemia cell survival via AKT. Blood Adv 1: 1635-1644 [PMID:29296810]
  26. Neuber C, Belter B, Meister S, Hofheinz F, Bergmann R, Pietzsch HJ and Pietzsch AJ. (2018) Overexpression of Receptor Tyrosine Kinase EphB4 Triggers Tumor Growth and Hypoxia in A375 Melanoma Xenografts: Insights from Multitracer Small Animal Imaging Experiments. Molecules 23 [PMID:29462967]
  27. Nowakowski J, Cronin CN, McRee DE, Knuth MW, Nelson CG, Pavletich NP, Rogers J, Sang BC, Scheibe DN and Swanson RV et al.. (2002) Structures of the cancer-related Aurora-A, FAK, and EphA2 protein kinases from nanovolume crystallography. Structure 10: 1659-67 [PMID:12467573]
  28. Pasquale EB. (2005) Eph receptor signalling casts a wide net on cell behaviour. Nat Rev Mol Cell Biol 6: 462-75 [PMID:15928710]
  29. Pasquale EB. (2008) Eph-ephrin bidirectional signaling in physiology and disease. Cell 133: 38-52 [PMID:18394988]
  30. Pasquale EB. (2010) Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer 10: 165-80 [PMID:20179713]
  31. Patwardhan PP, Ivy KS, Musi E, de Stanchina E and Schwartz GK. (2016) Significant blockade of multiple receptor tyrosine kinases by MGCD516 (Sitravatinib), a novel small molecule inhibitor, shows potent anti-tumor activity in preclinical models of sarcoma. Oncotarget 7: 4093-109 [PMID:26675259]
  32. Peuckert C, Aresh B, Holenya P, Adams D, Sreedharan S, Porthin A, Andersson L, Pettersson H, Wölfl S and Klein R et al.. (2016) Multimodal Eph/Ephrin signaling controls several phases of urogenital development. Kidney Int 90: 373-388 [PMID:27344203]
  33. Poitz DM, Ende G, Stütz B, Augstein A, Friedrichs J, Brunssen C, Werner C, Strasser RH and Jellinghaus S. (2015) EphrinB2/EphA4-mediated activation of endothelial cells increases monocyte adhesion. Mol Immunol 68: 648-56 [PMID:26552760]
  34. Qin H, Shi J, Noberini R, Pasquale EB and Song J. (2008) Crystal structure and NMR binding reveal that two small molecule antagonists target the high affinity ephrin-binding channel of the EphA4 receptor. J Biol Chem 283: 29473-84 [PMID:18708347]
  35. Rudno-Rudzińska J, Kielan W, Frejlich E, Kotulski K, Hap W, Kurnol K, Dzierżek P, Zawadzki M and Hałoń A. (2017) A review on Eph/ephrin, angiogenesis and lymphangiogenesis in gastric, colorectal and pancreatic cancers. Chin J Cancer Res 29: 303-312 [PMID:28947862]
  36. Salgia R, Kulkarni P and Gill PS. (2018) EphB4: A promising target for upper aerodigestive malignancies. Biochim Biophys Acta 1869: 128-137 [PMID:29369779]
  37. Seiradake E, Harlos K, Sutton G, Aricescu AR and Jones EY. (2010) An extracellular steric seeding mechanism for Eph-ephrin signaling platform assembly. Nat Struct Mol Biol 17: 398-402 [PMID:20228801]
  38. Thomas M, Huang WS, Wen D, Zhu X, Wang Y, Metcalf CA, Liu S, Chen I, Romero J and Zou D et al.. (2011) Discovery of 5-(arenethynyl) hetero-monocyclic derivatives as potent inhibitors of BCR-ABL including the T315I gatekeeper mutant. Bioorg Med Chem Lett 21: 3743-8 [PMID:21561767]
  39. Vivanti A, Ozanne A, Grondin C, Saliou G, Quevarec L, Maurey H, Aubourg P, Benachi A, Gut M and Gut I et al.. (2018) Loss of function mutations in EPHB4 are responsible for vein of Galen aneurysmal malformation. Brain 141: 979-988 [PMID:29444212]
  40. Wang Z, Zhang Y, Pinkas DM, Fox AE, Luo J, Huang H, Cui S, Xiang Q, Xu T and Xun Q et al.. (2018) Design, Synthesis, and Biological Evaluation of 3-(Imidazo[1,2- a]pyrazin-3-ylethynyl)-4-isopropyl- N-(3-((4-methylpiperazin-1-yl)methyl)-5-(trifluoromethyl)phenyl)benzamide as a Dual Inhibitor of Discoidin Domain Receptors 1 and 2. J Med Chem 61: 7977-7990 [PMID:30075624]
  41. Wodicka LM, Ciceri P, Davis MI, Hunt JP, Floyd M, Salerno S, Hua XH, Ford JM, Armstrong RC and Zarrinkar PP et al.. (2010) Activation state-dependent binding of small molecule kinase inhibitors: structural insights from biochemistry. Chem Biol 17: 1241-9 [PMID:21095574]
  42. Yu J, Streicher JL, Medne L, Krantz ID and Yan AC. (2017) EPHB4 Mutation Implicated in Capillary Malformation-Arteriovenous Malformation Syndrome: A Case Report. Pediatr Dermatol 34: e227-e230 [PMID:28730721]
  43. Zhang L, Shan Y, Ji X, Zhu M, Li C, Sun Y, Si R, Pan X, Wang J and Ma W et al.. (2017) Discovery and evaluation of triple inhibitors of VEGFR-2, TIE-2 and EphB4 as anti-angiogenic and anti-cancer agents. Oncotarget 8: 104745-104760 [PMID:29285210]
  44. Zhao H, Dong J, Lafleur K, Nevado C and Caflisch A. (2012) Discovery of a novel chemotype of tyrosine kinase inhibitors by fragment-based docking and molecular dynamics. ACS Med Chem Lett 3: 834-8 [PMID:24900387]