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Abstract

Overview
The epithelial sodium channels (ENaC) are located on the apical membrane of epithelial cells in the
kidney tubules, lung, respiratory tract, male and female reproductive tracts, sweat and salivary

glands, placenta, colon, and some other organs [10, 49, 15, 24, 23]. In these epithelia, Na* ions flow
from the extracellular fluid into the cytoplasm of epithelial cells via ENaC and are then pumped out

of the cytoplasm into the interstitial fluid by the Na*/K* ATPase located on the basolateral
membrane [43]. As Na* is one of the major electrolytes in the extracellular fluid (ECF), osmolarity

change initiated by the Na* flow is accompanied by a flow of water [7]. Thus, ENaC has a central
role in regulating ECF volume and blood pressure, primarily via its function in the kidney [44]. The
expression of ENaC subunits, hence its activity, is regulated by the renin-angiotensin-aldosterone
system, and other factors involved in electrolyte homeostasis [44, 33].

The genetics of the hereditary systemic pseudohypoaldosteronism type-I revealed that the activity of
ENaC is dependent on three subunits encoded by three genes [24, 12]. Within the protein
superfamily that includes ENaC, the crystal structure of ASIC was determined first, revealing a
trimeric structure with a large extracellular domain anchored in the membrane with a bundle of six
TM helices (two TM helices/subunit) [3, 27]. The first 3D structure of human ENaC was determined
by single-particle cryo-electron microscopy at a resolution of 3.7 A [39]. A recent study improved the
resolution to 3 A [40]. These structures confirmed that ENaC has a 3D quaternary structure similar
to ASIC. ENaC is assembled as a hetero-trimer with a clockwise order of a-y-p subunit viewed from
the top, as shown previously [13]. In contrast to ASIC1 which can assemble into a functional
homotrimer, ENaC activity can be reconstituted fully only as a heterotrimer with an afy or a 6y
composition [30].

In the respiratory tract and female reproductive tract, large segments of the epithelia are composed
of multi-ciliated cells. In these cells, ENaC is located along the entire length of the cilia that cover
the cell surface [17]. Cilial location greatly increases ENaC density per cell surface and allows ENaC
to serve as a sensitive regulator of osmolarity of the periciliary fluid throughout the whole depth of
the fluid bathing the cilia [17]. In contrast to ENaC, CFTR (ion transporter defective in cystic
fibrosis) is located on the non-cilial cell surface [17]. In the vas deferens segment of the male
reproductive tract, the luminal surface is covered by microvilli and stereocilia projections with
backbones composed of actin filament bundles [49]. In these cells, both ENaC and the water channel
aquaporin AQP9 are localized on these projections and also in the basal and smooth muscle layers
[49]. Thus, ENaC function regulates the volume of fluid lining epithelia essential for mucociliary
clearance of respiratory airways, transport of germ cells, fertilization, implantation, and cell
migration [38, 17, 24].

Genes and Phylogeny

In the human genome, there are four homologous genes (SCNN1A, SCNN1B, SCNN1D, and
SCNNI1G) that encode four proteins, a-, B-, y-, and 6-ENaC that may be involved in the assembly of
ENaC [11, 35, 48, 54]. These four subunits share 23-34% sequence identity and <20% identity with
ASIC subunits [24]. The genes coding for all four ENaC subunits are present in all bony vertebrates
with the exception of ray-finned fish genomes that have lost all ENaC genes. The mouse genome has
lost the gene SCNN1D that codes for 6-ENaC [19, 24, 24]. The «-, B-, and y-ENaC genes are also
present in jawless vertebrates (e.g., lampreys) and cartilaginous fishes (e.g., sharks) [24].
Examination of the methylation patterns of the 5'-flanking region of SCNN1A, SCNN1B, and
SCNNI1G genes in human cells showed an inverse correlation between gene expression and DNA
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methylation, suggesting epigenetic transcriptional control of ENaC genes [42].

Channel biogenesis, assembly and function

The expression of ENaC subunits is regulated primarily by aldosterone and many additional
extracellular and intracellular factors [44, 32, 41]. Most of the studies indicate that the expression of
the three subunits is not coordinated [9]. However, the transport of the subunits to the membrane is
dependent on three intact subunits. Even a missense mutation in one subunit reduces the
concentration of assembled channels on the cell surface [16].

ENaC is a constitutively active channel, i.e., the flow of Na* ions is not dependent on an activating
factor. Hence, heterologous cells expressing ENaC (e.g., Xenopus oocytes), must be maintained in a
solution that contains amiloride to keep ENaC inhibited. To measure ENaC activity, the bath solution
is switched to a solution without amiloride. ENaC has two major states: 1) Open, and 2) Closed. The
probability of ENaC being in the open state is called ENaC open probability (Po). ENaC activity is
regulated by a diverse array of factors that exert their effects by modifying, directly or indirectly, two
major parameters: 1) The density of ENaC in the membrane; and 2) The channel open probability

[28, 30]. The Po of ENaC is greatly decreased by external Na* and this response is called Na™ self-
inhibition [50, 4, 26].

An important aspect of ENaC regulation is that the a and the y subunits have conserved serine
protease cleavage sites in the extracellular segment [24]. Cleavage of these subunits by proteases
such as furin and plasmin leads to the activation of ENaC [45, 31, 1].

Diseases associated with ENaC mutations

Mutations in any of the three genes (SCNN1A, SCNN1B, and SCNN1G) may cause partial or
complete loss of ENaC activity, depending on the mutation [12, 21]. Such loss-of-function mutations
are associated with a syndrome named "systemic" or "multi-system" autosomal recessive
pseudohypoaldosteronism type I (PHA1B) [20, 12, 24, 17, 56, 47]. So far, no mutation has been found
in the SCNN1D gene that causes PHA. PHA patients suffer from severe salt loss from all aldosterone
target organs expressing ENaC, including kidney, sweat and salivary glands and respiratory tract.
During infancy and early childhood, the severe electrolyte disturbances, dehydration and acidosis
may require recurrent hospitalizations. The severity and frequency of salt-wasting episodes improve
with age [22]. PHA1B is also associated with a dysfunctional female reproductive system [17, 6].

The carboxy-terminal of ENaC includes a short consensus sequence called the PY motif. Mutations in
this motif in SCNN1B and SCNN1G are associated with Liddle syndrome, which is characterized by
early-onset hypertension [5, 51]. The PY motif is recognized by Nedd4-2 that is a ubiquitin ligase.
Thus, mutations in the PY motif reduce ubiquitylation of ENaC leading to the accumulation of ENaC
in the membrane, consequently enhance the activity of ENaC [46].

ENaC expression in tumors

The observation that [Na*] is higher in many cancerous cells as compared to non-cancerous cells has
led to the suggestion that enhanced expression of ENaC may be responsible for increased metastasis
[34]. However, analysis of RNA sequencing data of ENaC-encoding genes, and clinical data of
cervical cancer patients from The Cancer Genome Atlas showed a negative correlation with
histologic grades of tumor [52]. Similarly, studies on breast cancer cells that altered a-ENaC levels
by over-expression or siRNA-mediated knockdown showed that increased a-ENaC expression was
associated with decreased breast cancer cell proliferation [55]. In contrast, analysis of RNA
sequencing data from The Cancer Genome Atlas showed that high expression of SCNN1A was
correlated with poor prognosis in patients with ovarian cancer [36]. These findings indicate that the
association of ENaC levels with tumorigenesis varies depending on the tissue.

COVID-19

The surface of SARS-CoV-2 virions that cause COVID-19 is covered by many glycosylated S (spike)
proteins. These S proteins bind to the membrane-bound angiotensin-converting enzyme 2 (ACE2) as
a first step in the entry of the virion into the host cell. Viral entry into the cell is dependent on the
cleavage of the S protein (at Arg-667/Ser-668) by a serine-protease. Anand et al. showed that this
cleavage site has a sequence motif that is homologous to the furin cleavage site in a-ENaC [2]. A
comprehensive review on the pathological consequences of COVID-19 suggests a role for ENaC in
the early phases of COVID-19 infection in the respiratory tract epithelia [18].

Contents

This is a citation summary for Epithelial sodium channel (ENaC) in the Guide to Pharmacology
database (GtoPdb). It exists purely as an adjunct to the database to facilitate the recognition of
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citations to and from the database by citation analyzers. Readers will almost certainly want to visit
the relevant sections of the database which are given here under database links.

GtoPdb is an expert-driven guide to pharmacological targets and the substances that act on them.
GtoPdb is a reference work which is most usefully represented as an on-line database. As in any
publication this work should be appropriately cited, and the papers it cites should also be recognized.
This document provides a citation for the relevant parts of the database, and also provides a
reference list for the research cited by those parts. For further details see [8].

Please note that the database version for the citations given in GtoPdb are to the most recent
preceding version in which the family or its subfamilies and targets were substantially changed. The
links below are to the current version. If you need to consult the cited version, rather than the most
recent version, please contact the GtoPdb curators.

Database links

Epithelial sodium channel (ENaC)
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyld=122
Introduction to Epithelial sodium channel (ENaC)
https://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyld=122
Channels and Subunits
Complexes
ENaCapy
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectld=742
Subunits
ENaC «
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectld=738
ENaC B
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectld=739
ENaC vy
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectld=741
ENaC 6
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectld=740
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