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Abstract

Overview
The	epithelial	sodium	channels	(ENaC)	are	located	on	the	apical	membrane	of	epithelial	cells	in	the
kidney	tubules,	lung,	respiratory	tract,	male	and	female	reproductive	tracts,	sweat	and	salivary
glands,	placenta,	colon,	and	some	other	organs	[10,	49,	15,	24,	23].	In	these	epithelia,	Na+	ions	flow
from	the	extracellular	fluid	into	the	cytoplasm	of	epithelial	cells	via	ENaC	and	are	then	pumped	out
of	the	cytoplasm	into	the	interstitial	fluid	by	the	Na+/K+	ATPase	located	on	the	basolateral
membrane	[43].	As	Na+	is	one	of	the	major	electrolytes	in	the	extracellular	fluid	(ECF),	osmolarity
change	initiated	by	the	Na+	flow	is	accompanied	by	a	flow	of	water	[7].	Thus,	ENaC	has	a	central
role	in	regulating	ECF	volume	and	blood	pressure,	primarily	via	its	function	in	the	kidney	[44].	The
expression	of	ENaC	subunits,	hence	its	activity,	is	regulated	by	the	renin-angiotensin-aldosterone
system,	and	other	factors	involved	in	electrolyte	homeostasis	[44,	33].

The	genetics	of	the	hereditary	systemic	pseudohypoaldosteronism	type-I	revealed	that	the	activity	of
ENaC	is	dependent	on	three	subunits	encoded	by	three	genes	[24,	12].	Within	the	protein
superfamily	that	includes	ENaC,	the	crystal	structure	of	ASIC	was	determined	first,	revealing	a
trimeric	structure	with	a	large	extracellular	domain	anchored	in	the	membrane	with	a	bundle	of	six
TM	helices	(two	TM	helices/subunit)	[3,	27].	The	first	3D	structure	of	human	ENaC	was	determined
by	single-particle	cryo-electron	microscopy	at	a	resolution	of	3.7	Å	[39].	A	recent	study	improved	the
resolution	to	3	Å	[40].	These	structures	confirmed	that	ENaC	has	a	3D	quaternary	structure	similar
to	ASIC.	ENaC	is	assembled	as	a	hetero-trimer	with	a	clockwise	order	of	α-γ-β	subunit	viewed	from
the	top,	as	shown	previously	[13].	In	contrast	to	ASIC1	which	can	assemble	into	a	functional
homotrimer,	ENaC	activity	can	be	reconstituted	fully	only	as	a	heterotrimer	with	an	αβγ	or	a	δβγ
composition	[30].

In	the	respiratory	tract	and	female	reproductive	tract,	large	segments	of	the	epithelia	are	composed
of	multi-ciliated	cells.	In	these	cells,	ENaC	is	located	along	the	entire	length	of	the	cilia	that	cover
the	cell	surface	[17].	Cilial	location	greatly	increases	ENaC	density	per	cell	surface	and	allows	ENaC
to	serve	as	a	sensitive	regulator	of	osmolarity	of	the	periciliary	fluid	throughout	the	whole	depth	of
the	fluid	bathing	the	cilia	[17].	In	contrast	to	ENaC,	CFTR	(ion	transporter	defective	in	cystic
fibrosis)	is	located	on	the	non-cilial	cell	surface	[17].	In	the	vas	deferens	segment	of	the	male
reproductive	tract,	the	luminal	surface	is	covered	by	microvilli	and	stereocilia	projections	with
backbones	composed	of	actin	filament	bundles	[49].	In	these	cells,	both	ENaC	and	the	water	channel
aquaporin	AQP9	are	localized	on	these	projections	and	also	in	the	basal	and	smooth	muscle	layers
[49].	Thus,	ENaC	function	regulates	the	volume	of	fluid	lining	epithelia	essential	for	mucociliary
clearance	of	respiratory	airways,	transport	of	germ	cells,	fertilization,	implantation,	and	cell
migration	[38,	17,	24].	

Genes	and	Phylogeny
In	the	human	genome,	there	are	four	homologous	genes	(SCNN1A,	SCNN1B,	SCNN1D,	and
SCNN1G)	that	encode	four	proteins,	α-,	β-,	γ-,	and	δ-ENaC	that	may	be	involved	in	the	assembly	of
ENaC	[11,	35,	48,	54].	These	four	subunits	share	23-34%	sequence	identity	and	<20%	identity	with
ASIC	subunits	[24].	The	genes	coding	for	all	four	ENaC	subunits	are	present	in	all	bony	vertebrates
with	the	exception	of	ray-finned	fish	genomes	that	have	lost	all	ENaC	genes.	The	mouse	genome	has
lost	the	gene	SCNN1D	that	codes	for	δ-ENaC	[19,	24,	24].	The	α-,	β-,	and	γ-ENaC	genes	are	also
present	in	jawless	vertebrates	(e.g.,	lampreys)	and	cartilaginous	fishes	(e.g.,	sharks)	[24].
Examination	of	the	methylation	patterns	of	the	5'-flanking	region	of	SCNN1A,	SCNN1B,	and
SCNN1G	genes	in	human	cells	showed	an	inverse	correlation	between	gene	expression	and	DNA
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methylation,	suggesting	epigenetic	transcriptional	control	of	ENaC	genes	[42].	

Channel	biogenesis,	assembly	and	function
The	expression	of	ENaC	subunits	is	regulated	primarily	by	aldosterone	and	many	additional
extracellular	and	intracellular	factors	[44,	32,	41].	Most	of	the	studies	indicate	that	the	expression	of
the	three	subunits	is	not	coordinated	[9].	However,	the	transport	of	the	subunits	to	the	membrane	is
dependent	on	three	intact	subunits.	Even	a	missense	mutation	in	one	subunit	reduces	the
concentration	of	assembled	channels	on	the	cell	surface	[16].

ENaC	is	a	constitutively	active	channel,	i.e.,	the	flow	of	Na+	ions	is	not	dependent	on	an	activating
factor.	Hence,	heterologous	cells	expressing	ENaC	(e.g.,	Xenopus	oocytes),	must	be	maintained	in	a
solution	that	contains	amiloride	to	keep	ENaC	inhibited.	To	measure	ENaC	activity,	the	bath	solution
is	switched	to	a	solution	without	amiloride.	ENaC	has	two	major	states:	1)	Open,	and	2)	Closed.	The
probability	of	ENaC	being	in	the	open	state	is	called	ENaC	open	probability	(Po).	ENaC	activity	is
regulated	by	a	diverse	array	of	factors	that	exert	their	effects	by	modifying,	directly	or	indirectly,	two
major	parameters:	1)	The	density	of	ENaC	in	the	membrane;	and	2)	The	channel	open	probability
[28,	30].	The	Po	of	ENaC	is	greatly	decreased	by	external	Na+	and	this	response	is	called	Na+	self-
inhibition	[50,	4,	26].

An	important	aspect	of	ENaC	regulation	is	that	the	α	and	the	γ	subunits	have	conserved	serine
protease	cleavage	sites	in	the	extracellular	segment	[24].	Cleavage	of	these	subunits	by	proteases
such	as	furin	and	plasmin	leads	to	the	activation	of	ENaC	[45,	31,	1].

Diseases	associated	with	ENaC	mutations
Mutations	in	any	of	the	three	genes	(SCNN1A,	SCNN1B,	and	SCNN1G)	may	cause	partial	or
complete	loss	of	ENaC	activity,	depending	on	the	mutation	[12,	21].	Such	loss-of-function	mutations
are	associated	with	a	syndrome	named	"systemic"	or	"multi-system"	autosomal	recessive
pseudohypoaldosteronism	type	I	(PHA1B)	[20,	12,	24,	17,	56,	47].	So	far,	no	mutation	has	been	found
in	the	SCNN1D	gene	that	causes	PHA.	PHA	patients	suffer	from	severe	salt	loss	from	all	aldosterone
target	organs	expressing	ENaC,	including	kidney,	sweat	and	salivary	glands	and	respiratory	tract.
During	infancy	and	early	childhood,	the	severe	electrolyte	disturbances,	dehydration	and	acidosis
may	require	recurrent	hospitalizations.	The	severity	and	frequency	of	salt-wasting	episodes	improve
with	age	[22].	PHA1B	is	also	associated	with	a	dysfunctional	female	reproductive	system	[17,	6].

The	carboxy-terminal	of	ENaC	includes	a	short	consensus	sequence	called	the	PY	motif.	Mutations	in
this	motif	in	SCNN1B	and	SCNN1G	are	associated	with	Liddle	syndrome,	which	is	characterized	by
early-onset	hypertension	[5,	51].	The	PY	motif	is	recognized	by	Nedd4-2	that	is	a	ubiquitin	ligase.
Thus,	mutations	in	the	PY	motif	reduce	ubiquitylation	of	ENaC	leading	to	the	accumulation	of	ENaC
in	the	membrane,	consequently	enhance	the	activity	of	ENaC	[46].

ENaC	expression	in	tumors
The	observation	that	[Na+]	is	higher	in	many	cancerous	cells	as	compared	to	non-cancerous	cells	has
led	to	the	suggestion	that	enhanced	expression	of	ENaC	may	be	responsible	for	increased	metastasis
[34].	However,	analysis	of	RNA	sequencing	data	of	ENaC-encoding	genes,	and	clinical	data	of
cervical	cancer	patients	from	The	Cancer	Genome	Atlas	showed	a	negative	correlation	with
histologic	grades	of	tumor	[52].	Similarly,	studies	on	breast	cancer	cells	that	altered	α-ENaC	levels
by	over-expression	or	siRNA-mediated	knockdown	showed	that	increased	α-ENaC	expression	was
associated	with	decreased	breast	cancer	cell	proliferation	[55].	In	contrast,	analysis	of	RNA
sequencing	data	from	The	Cancer	Genome	Atlas	showed	that	high	expression	of	SCNN1A	was
correlated	with	poor	prognosis	in	patients	with	ovarian	cancer	[36].	These	findings	indicate	that	the
association	of	ENaC	levels	with	tumorigenesis	varies	depending	on	the	tissue.

COVID-19
The	surface	of	SARS-CoV-2	virions	that	cause	COVID-19	is	covered	by	many	glycosylated	S	(spike)
proteins.	These	S	proteins	bind	to	the	membrane-bound	angiotensin-converting	enzyme	2	(ACE2)	as
a	first	step	in	the	entry	of	the	virion	into	the	host	cell.	Viral	entry	into	the	cell	is	dependent	on	the
cleavage	of	the	S	protein	(at	Arg-667/Ser-668)	by	a	serine-protease.	Anand	et	al.	showed	that	this
cleavage	site	has	a	sequence	motif	that	is	homologous	to	the	furin	cleavage	site	in	α-ENaC	[2].	A
comprehensive	review	on	the	pathological	consequences	of	COVID-19	suggests	a	role	for	ENaC	in
the	early	phases	of	COVID-19	infection	in	the	respiratory	tract	epithelia	[18].
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citations	to	and	from	the	database	by	citation	analyzers.	Readers	will	almost	certainly	want	to	visit
the	relevant	sections	of	the	database	which	are	given	here	under	database	links.

GtoPdb	is	an	expert-driven	guide	to	pharmacological	targets	and	the	substances	that	act	on	them.
GtoPdb	is	a	reference	work	which	is	most	usefully	represented	as	an	on-line	database.	As	in	any
publication	this	work	should	be	appropriately	cited,	and	the	papers	it	cites	should	also	be	recognized.
This	document	provides	a	citation	for	the	relevant	parts	of	the	database,	and	also	provides	a
reference	list	for	the	research	cited	by	those	parts.	For	further	details	see	[8].

Please	note	that	the	database	version	for	the	citations	given	in	GtoPdb	are	to	the	most	recent
preceding	version	in	which	the	family	or	its	subfamilies	and	targets	were	substantially	changed.	The
links	below	are	to	the	current	version.	If	you	need	to	consult	the	cited	version,	rather	than	the	most
recent	version,	please	contact	the	GtoPdb	curators.
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