Valvular and Myocardial Fibroblast Activation in Aortic Stenosis *A Prospective Positron Emission Tomography Study* Neil Craig¹, Michael McDermott¹, Jolien Geers², Krithika Loganath¹, Menaka Mahendran¹ Laura Clark¹, Audrey White¹, Beth Whittington¹, Anna Barton¹, Craig Balmforth¹, Joel Lenell¹. Michelle Williams¹, Edwin JR van Beek¹, Damini Dey², Piotr Slomka², David E Newby¹, Marc R Dweck¹ (1) BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom (2) Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, USA Activated fibroblasts drive leaflet thickening and left ventricular decompensation in aortic stenosis. Gallium-68 Fibroblast Activation Protein Inhibitor (⁶⁸Ga-FAPI) binds to these key effector cells, and provides a readout of fibroblast activation. We aimed to describe the role of activated fibroblasts in patients with aortic stenosis *in vivo* using ⁶⁸Ga-FAPI. In a prospective observational study, patients with aortic stenosis and control subjects underwent echocardiography, ⁶⁸Ga-FAPI PET, CT, and MRI. Valvular and myocardial ⁶⁸Ga-FAPI uptake was quantified using maximal standardised uptake values (SUVmax), and target-to-background ratio (TBRmax). Aortic stenosis severity was measured by peak velocity on echocardiography and the CT calcium score. Myocardial fibrosis was quantified by late gadolinium enhancement (LGE) on MRI. 86 patients with aortic valve disease (72±11 years, 68% male) plus 9 matched control subjects (72±9 years, 67%% male) participated. Increased 68 Ga-FAPI uptake was observed in the aortic valves of patients with aortic stenosis compared with controls (p<0.001). 68 Ga-FAPI TBRmax correlated with peak velocity (r=0.532, p<0.0010) and calcium score (r = 0.577, p<0.001). 54 patients (69%) had myocardial 68 Ga-FAPI uptake, of whom 30 (38%) also had LGE corresponding to the region of 68Ga-FAPI uptake. Myocardial 68 Ga-FAPI uptake correlated with increased indexed left ventricular mass (r=0.429, p<0.001) and indexed Extracellular Volume (r=0.404, p<0.001). For the first time, we have described valvular and myocardial fibroblast activation in patients with aortic stenosis *in vivo*. Valvular fibroblast activation is increased in patients with aortic stenosis, correlating with increased disease severity. Myocardial fibroblast activation is seen in the majority of patients with aortic stenosis in areas with and without established fibrosis, and is associated with adverse left ventricular remodelling. ⁶⁸Ga-FAPI PET can visualise the key effector cell driving aortic valve disease, and may have a role in monitoring disease modifying treatments, as well as identifying patients at high risk of myocardial decompensation. **Figure. 1** Valvular and Myocardial Fibroblast Activation in Aortic Stenosis Panel A: Valvular ⁶⁸Ga-FAPI uptake is increased in patients with aortic stenosis compared with age and sex-matched controls. There was a positive correlation between valvular ⁶⁸Ga-FAPI uptake and both peak aortic jet velocity on echocardiography and the CT Calcium Score. Panel B: Myocardial ⁶⁸Ga-FAPI uptake was seen in 69% of patients with aortic stenosis, of whom the majority had moderate to severe disease. ⁶⁸Ga-FAPI uptake was present whenever and wherever established fibrosis was seen, but was also present in nearly 1/3 of patients who did not have established fibrosis. Myocardial ⁶⁸Ga-FAPI uptake correlated with measures of left ventricular adverse remodelling.