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Abstract. Coupled mooring analysis using CFD with dynamic mooring models is becoming an
established field. This is an important step for better predictions of responses of moored marine
structures in extreme sea states and also for capturing the low-frequency response correctly.
The coupling between the CFD and mooring solvers are most often carried out by exchanging
the fairlead/anchor points and fairlead forces. In this paper we will discuss effects of using (i)
viscous fluid flow on a mooring component level (submerged buoys and clump weights) and (ii)
the fluid-structure coupling between the viscous fluid solver and the mooring system.

1 INTRODUCTION

Simulation of moored marine structures, including floating offshore renewable devices, are tra-
ditionally carried out using tools based on linear potential flow theories with dynamic mooring
models. The two most common models for mooring dynamics are the lumped-mass approxima-
tion (such as the well-known OrcaFlex [1] software) and the linear finite element model, (such
as in ANSYS-AQWA [2]). When the moored structure is simulated in CFD, the fidelity of
the wave-structure interaction increases significantly, but the mooring models have traditionally
been reduced to linear springs [3, 4] or quasi-static moorings. However, coupled mooring anal-
ysis using viscous Reynolds-Averaged Navier-Stokes equations (RANS) has started to become
established [5, 6, 7, 8]. This is an important step for better predictions of responses in extreme
sea states and also for capturing low-frequency response correctly [9]. In this paper we outline
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and discuss recent developments in the mooring dynamics software Moody [10], and how it can
be used for such analysis. Moody is based on an hp-adaptive discontinuous Galerkin method
and comes with an API for coupling to different fluid solvers e.g., the two-phase RANS solver
in OpenFOAM. In this paper we will look at the next steps in coupled mooring analysis using
CFD such as:

– using viscous fluid flow directly on a mooring component level, e.g. for submerged buoys
and clump weights used in hybrid mooring systems;

– the fluid-structure coupling between the viscous fluid solver and the mooring system. So
far, this coupling has mostly been driven by exchange of the fairlead/anchor points and
fairlead forces. The drag and inertia forces acting on the mooring line are typically given
by linear potential flow computed inside the mooring solver. Here we will look into the
effect of using a one-sided coupling (sampling of fluid in the RANS part to be used for
drag and inertia in the mooring solver)

2 MOORING SOLVER

2.1 Equations for a elastic cable

A cable of length L is parametrised in the three inertial coordinates by a position vector

~rc =
[
rcx(s), rcy(s), rcz(s)

]T
, where s ∈ [0, L] is the unstretched cable coordinate. The equation of

motion for chains and ideally flexible lines (neglecting bending stiffness) becomes

γ0
∂2~rc

∂t2
=

∂

∂s

(
T (ε, ε̇)

1 + ε

∂~rc

∂s

)
+ ~f c , (1)

ε =

∣∣∣∣∂~rc∂s
∣∣∣∣− 1 , (2)

where γ0 is the cable mass per unit length, ε is the cable strain, and ε̇ is the strain-rate. The
axial tension, T (ε, ε̇), is a function of the strain and constitutes the cable material properties.
As an example, a linear visco-elastic cable is described by T = EA0ε + ξε̇ in which EA0 is the
axial stiffness and ξ is the internal damping coefficient. The external forces are grouped in the
variable ~f c, and contains the hydrodynamic forces of added mass, buoyancy and drag from the
Morison equation [11] and contact forces from the ground ~fg. In this paper, we will primarily
discuss the hydrodynamic fores, and no further details about the sea-floor contact model is
presented. See [12] for more information on the ground model.

~f c = ~fa + ~f b + ~fd + ~fg , (3)

~fa = ρA0 (~af⊥ + Cmı~a
∗
ı + Cm⊥~a

∗
⊥) , (4)

~f b = (A0ρ− γ0)gẑ , (5)

~fd = 0.5dρ
√

1 + ε (Cdı |~v∗ı |~v∗ı + Cd⊥ |~v∗⊥|~v∗⊥) , (6)

Here, index ı denotes the tangential projection of a vector onto the cable direction, and ⊥ the
remaining normal components. ~v∗ and ~a∗ denote the relative velocity and acceleration between
the water and the cable respectively. The hydrodynamic coefficients Cm refer to added mass,
and Cd refer to drag. Equations (1) and (2) are solved with the Moody mooring solver using an
hp-adaptive discontinuous Galerkin method.
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2.2 High-order discontinuous Galerkin method

The computational domain Ω is partitioned into Nel elements Ωe ∈ [seL, s
e
R] of element size

he. A function g(s, t) is approximated to an arbitrary order P within Ωe as:

g(s, t) ≈ ge(s, t) =
k=P∑
k=0

φk(s)g̃ek(t) , (7)

where g̃ek is the k:th order expansion coefficient to trial function φk(s). Legendre polynomials
are used as test and trial functions to obtain a diagonal local mass matrix. Also, let us define

(a(s, t), b(s, t))Ωe =

∫
Ωe

a(s, t)b(s, t)ds , (8)

as the inner product operator ( )Ωe . Expressed in strong form within Ωe, the DG formulation
reads:

(φl, φm)Ωe
˜̇ue =

(
φl,

∂φm
∂ξ

)
Ωe

F̃ e +

[
~̂F − ~F+

]seR
seL

+ (φl, G)Ωe . (9)

A numerical flux (denoted with ·̂ in Equation (9)) is in the DG method used to express the
boundary value of a quantity. Moody uses fluxes according to:

~̂F =
1

2

(
~F+ + ~F− + λ

(
n−~u+ + n+~u−

))
, (10)

λ =

√
1

γ0

∂T

∂ε
, (11)

where n is the outward pointing unit normal, λ is the speed of sound in the cable and ~̂F is the
Lax–Friedrichs flux of ~F . Superscripts + and − tell if values are taken from the interior domain
(from Ωe) or from the neighbouring element (Ωe+1 or Ωe−1 respectively). See [12] for details.

2.3 Coupled CFD solver for moored objects

The force and moment from the fluid acting on each computational face of the body surface
is computed from the fluid pressure pi and the shear stress τi of the surrounding flow. The
rigid-body motion is governed by Newton’s II law

d

dt

(
Mf~u

)
=

Ncell∑
i=1

Ai

[
pin̂i + ~τi

ri × (pin̂ + ~τi)

]
+

N∑
i=1

ri × ~Fi , (12)

where ri is the position vector from the centre of gravity to the cell face-centre or the mooring
attachment point respectively, n̂i is the unit outward-pointing normal of face i and Ai is the
face area. The total number of cells on the body surface is Ncell. Here the fundamental coupling
between the mooring and the CFD domains is evident. The sum of N mooring line forces ~Fi is
added to the rigid-body motion equation.

The mooring force computed by Moody acts as a restraint to the rigid body solver in the CFD
domain. For details and validation of the coupling see [6, 10]. The connection with Moody was
made using the interpolation scheme of Moody API. The typical time step size for the mooring
cables in these simulations is at least an order of magnitude smaller than the time step used in
the fluid part. A quadratic interpolation of attachment point position was used to sub-step the
position boundary condition of the mooring solver.
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2.4 CFD to resolve mooring components

A less common application of coupled CFD–mooring simulations is to resolve mooring com-
ponents (submerged buoys or clump weights) in CFD. The forces and moments acting on the
mooring component follow directly as for any other body, see eq. (12). CFD clearly carries a
heavy computational burden, but if the main floater is to be resolved in CFD the extra cost
can be justified. Also, for larger submerged buoys relatively near the surface or even surface
piercing, the flow may be complicated enough to justify the extra effort.

2.5 Fluid sampling

This type of simulation introduces another functionality to the CFD-mooring simulation
palette. Mooring cables are thin structures that often have little impact on the surrounding
water motion due to current or waves. As long as regions where there is a risk of large vortex-
induced-motion (VIM) are avoided, a one-sided coupling is therefore a good approximation to
increase the fidelity of the resulting mooring loads. In this one-sided coupling, the fluid motion
in the CFD domain is allowed to influence the mooring simulation via the parameterised Morison
approximation. But the effect of the cable motion in the flow is not simulated, hence a one-sided
coupling. This simplification allows for the moorings to move also in regions of coarser mesh.
The loads on the system are from [11], according to eqs. (4) - (6). The flow-chart in Figure 1
explains the working principle of the fluid velocity sampling.

At each time-step, the CFD solver collects important sampling points from the mooring
solver. In the current implementation we use the quadrature points of the Legendre polynomials,
however a coarser sampling may very well be justified. The mooring points are converted to fluid
probes, which sample the fluid density (ρ), the velocity (U), and the acceleration

(
∂U
∂t

)
. The

sampled fluid state data is used by Moody to determine the effective level of submergence for
each line element, as well as flow-dependent Morison loads from added mass and drag effects.
The domain sizes of the two solvers are allowed to be different, so for any point where the
mooring lines are extending beyond the CFD domain, the fluid is assigned to be quiescent, and
the density is selected based on the still water level.

Figure 1: Flow-chart of one-sided sampling implementation.
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3 TEST CASES

3.1 CFD modelling of a mooring component (submerged buoy)

Mooring component simulation can be done in several different ways. In this case, a mooring
component is a submerged buoy or clump-weight, which is of substantial size. Palm and Eskilsson
[13] have shown a detailed analysis of the response of three cylindrical submerged buoys using
four different numerical methods. The cylinder shown here has D = 2.1 m diameter, 8.4 m3

volume and a reserve buoyancy of 55 kN. It is attached -1.837 m below its center of volume to
two mooring lines of polyester (80 mm nominal diameter). Figure 2 shows the layout of the
mooring leg and the cfd-mesh of the cylinder at rest. The cylinder was simulated moving in still
water with the entire computational domain. The four methods used were:

1. xyz - Only translation implemented in the buoy motion. Rotation is neglected, and ignored;

2. ind - The Morison drag loads due to rotating the buoy are computed independently from
the loads originating from the translating motion;

3. quad - In the quad method, the coupling between translation and rotation of the buoy is
solved using numerical quadrature along the symmetry axis;

4. cfd - As a final step in fidelity, a full RANS simulation is used for loads influencing the
buoy motion.

Figure 3 shows the difference in result between different levels of fidelity used for estimating
the buoy and mooring response. The xyz method is deviating considerably from the other
three methods. From this we conclude that the rotational mode of motion has a large impact
on the motion response of both the buoy and the mooring load. The cfd simulation matches
relatively well with the quad and ind methods in terms of mooring force range, however, the

(a)

(b)

Figure 2: (a): Layout of the mooring system at equilibrium, showing the location of points A, B, C and
F in the mooring leg. (b): Two-dimensional view of the buoy dimensions in the CFD domain.
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(a)

(d)

(b)

(e)

(c)

(f)

Figure 3: Envelope results for the the cylinder. (a),(b) and (c) show buoy motion amplitudes η̂x, η̂z
and pitch (θ̂) respectively. (d) shows the phase difference between fairlead motion and motion of point
B. (a)-(c) compare the Fourier amplitudes at the driving frequency. (e) and (f) compare the dynamic
tension range (max(T )−min(T )) at point B of cable 1 and at point C of cable 2 respectively.

predicted motion amplitudes of the buoy are overall smaller in the cfd model than in the Morison
approaches.

To further illustrate the importance of high-fidelity simulations we consider the vorticity
around the cylinder. Figure 4 shows that even around a simple geometric form in moderate
motion amplitude (fairlead amplitude is a = 0.5 m), the vortical influence can clearly be seen.
For cases where the mooring system is fitted with large floaters or clump-weight, the importance
of mooring component fidelity on the device motion and overall responses is clearly illustrated.

3.2 Catenary chain in current

A comprehensive experimental parameter study of catenary moorings was performed by Bar-
rera et al. [14]. They investigated the influence of catenary weight, fairlead motion, currents,
waves, bottom friction etc. The chains are submerged in the wave and current flume at IH
Cantabria, Spain, and are Froude scaled to a 1:40 scale. The flume is 56 m long (but truncated
to 24 m in the CFD model) and has a water depth of 1.35 m. The catenary chain investigated
here is 7.305m long, with a mass of 0.115kg/m, an equivalent diameter of 0.0033m and a Young’s
modulus of E = 15.6 GPa. In the experimental set-up a spring is attached to the anchor, but as
we do not have details about the rest lengths and pretension we disregard the spring. This will
give a more stiff mooring system but the overall characteristics will be captured. The anchor is
located at xa = (0, 0, 0) m and the fairlead at rest at xf = (6.97, 0, 1.2) m. As we are interested
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(a) (b) (c)

(d) (e)

Figure 4: Top view of the CFD simulations of the submerged buoy at z=hb/2 with the Q=200 iso-
surface. Colors are by velocity magnitude U ∈ [0, 4.3] m/s (blue to red). The snap shots were taken 0.2
time periods apart over one cycle: (a) t/Tp = 0.0; (b) t/Tp = 0.2; (c) t/Tp = 0.4; (d) t/Tp = 0.6 and
(e) t/Tp = 0.8;

in the fluid sampling we simulate the case of a steady current of 0.08 m/s. For simplicity we
here assume the current to be uniform. At the fairlead a sinusoidal surge motion with amplitude
0.075 m is imposed for a number of different periods Tf = [0.79, 1.58, 2.37, 3.16, 4.74] s.

The chain is divided into Nel = 20 elements of order P = 4 and the mooring simulations are
done using a CFL condition of 0.9. The fluid part is modelled as a quasi 2D domain made up
of 430 000 rather uniform hexahedrals.

Figure 5 shows the time history of the tension at the fairlead using (i) no current, (ii) a
uniform current inside Moody, and (iii) sampling the current from the CFD domain. We see
that we get a slight difference in the peak load, the current gives a larger peak load. This effect
diminishes with increasing Tf . As expected there are only very minute differences between the
CFD sampling and the internal uniform current, which verifies the fluid sampling procedure
inside the OpenFOAM solver. The differences arise mainly due to: (i) that the fluid velocity
close to the bottom differs ; and (ii) that some nodes exits the CFD domain (very small value
below the bottom) and experience zero fluid velocity in the sampled simulation. The numerical
noise seen in the low-tension region of Figure 5 is attributed to ground-model interaction issues
in the high-order formulation of Moody.

Comparing the numerical simulations to the experimental data from [14], we can see that we
have larger max peaks and less difference between current and still water in the simulations (see
Figure 6). This is believed to be due to assumptions made in the numerical set up, such as the
disregard of the spring at the anchor and the approximation of uniform flow. Nevertheless, the
general behavior of the maximum and minimum tension and the effect of current is captured in
the numerical model.
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Figure 5: Time history of the tension in the fairlead for the case of no current, uniform current inside
the Moody mooring solver and uniform current sampled from the OpenFOAM CFD solver. Sinusoidal
surge motion of the fairlead with 0.075 m amplitude and periods of (a) Tf = 0.79 s, (b) Tf = 1.58 s,
(c) Tf = 3.16 s and (d) Tf = 4.74 s.

3.3 OC5 floating offshore wind turbine

A much studied floating offshore wind turbine (FOWT) case is the DeepCwind semisub-
mersible that has been used in the OC5-OC6 projects in the International Energy Agency (IEA)
Wind Task 30 [15, 9]. DeepCwind is slack moored with three catenaries 120 degrees apart and
the front catenary is aligned in the wave direction (see Figure 7). The case is a 1:50 scale model
tested at the wave basin at Marin, the Netherlands. The OC5 case has been modelled using the
CFD solver ReFRESCO in a series of papers by Burmester et al. [7, 16]. Most of the studies has
focused on verification and validation (V&V) of the CFD method with the mooring only repre-
sented as simple restoring forces, but in the recent study [7] the CFD model ReFRESCO was
coupled to the dynamic mooring solver aNySIM to model the OC5 case. Another study focusing
on numerical uncertainties is the V&V study [17] using bi-chromatic waves in the STAR-CCM+
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Figure 6: Maximum (a) and minimum (b) fairlead tension for the case of no current, uniform cur-
rent inside the Moody mooring solver and uniform current sampled from the OpenFOAM CFD solver.
Sinusoidal surge motion of the fairlead with 0.075 m amplitude and period Tf s. Experimental data
from [14].

model. Very recently Martin and Bihs [8] simulated this case using a mooring model based on
finite difference discretization of a geometric exact beam model coupled to the REEF3D CFD
model. It is worth to note that this model does sample the fluid dynamics to be used in the
mooring drag and inertia.

The FOWT is set-up in OpenFOAM in a hexahedral dominated mesh. The mesh is rather
coarse consisting of 2M cells and only two cells in the boundary layer. Thus, the results presented
below is of preliminary nature. We generate regular waves with wave height of 0.147m and period
of 1.71 s using the native wave generation in OpenFOAM-v2012. The three catenaries are each
discretised into 10 elements of order 4. See Table 1 for information about the data parameters
of the semi-submersible and the mooring used in the simulation.

Table 1: Parameters for the OC5 case in model scale.

Semi-submersible Mooring

Mass 111.66 kg Mass 50.2E-03 kg/m
CoG (0 0 -0.161) m Eqv. diameter 2.77E-03 m
Iyy 49.77 kgm² Stiffness 5.98E03 N

Length 16.71 m

Figure 8 show a time history of the tension at the fairlead for the forward catenary for
simulations with and without fluid sampling from the CFD domain. First we note that the
tensions are generally similar between the simulations but there are differences. We believe the
differences to be exaggerated in these simulations due to a faulty restart of the mooring solver
in the model that samples the fluid domain. It is also interesting to compare to the result of [8].
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Figure 7: Snapshot of slack-moored OC5 FOWT in regular waves (H = 0.147 m and T = 1.71. s)
propagating in the positive x-direction.

Even though the two studies uses slightly different wave cases the tension response is similar
with clear high-order terms. This is in contrast to the reference mooring solutions presented in
[8].
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Figure 8: Tension at the fairlead of the front mooring line.

4 CONCLUSIONS

Mooring lines are slender structures and the one-way coupling has a high degree of accuracy
for most mooring applications. For cases where the current has a strong spatial variation, the
one-way sampling effectively transmits the CFD domain flow resolution to the dynamic mooring
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response. The sampling also takes care of the problem of near-field disturbance of the wave-
field close to larger structures or complex geometries. In such cases, an analytic approximation
based on assuming still water or an undisturbed incoming wave-field are both uncertain, and
the one-way implementation guarantees a much more representative flow to estimate the fluid
loads on the moorings. Of course, the benefit is highest close to the body and is less important
for the lower parts of the mooring lines. For use with e.g. vortex induced motion (VIM) there
should, however, be a two-way coupling for the mooring lines. Presently we are working on
implementing the Eulerian-Lagrangian approach as presented by Martin et al. [18] for two-way
coupling of net structures.

Finally, it should be mentioned that even though the sampling has been developed for cou-
pling OpenFOAM with Moody, the sampling functionalities are straightforward to use for any
other mooring solver, by just adding a few routines to the mooring solver API (to send the
mooring nodes to the CFD solver and to set the sampled fluid velocities in the mooring). These
updates are included in the next release of Moody (v2.1). Moody and the OpenFOAM sampling
routines will be available through github (https://github.com/johannep/moodyAPI) and from
the CCP-WSI repository (https://www.ccp-wsi.ac.uk).
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