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Abstract. Accurate and efficient prediction of extreme ship responses continues to be an
important and challenging problem in ship hydrodynamics. Probabilistic frameworks in con-
junction with computationally efficient numerical hydrodynamic tools such as volume-based
and potential flow methods have been developed that allow researchers and ship designers to
better understand extreme events. However, the ability of these tools to represent the physics
quantitatively during extreme events is limited and not robust to different problems. There-
fore, model testing will continue to be important in analysis, and more emphasis will be placed
on high fidelity computational fluid dynamics (CFD) simulations. Experiments and CFD both
come at well documented costs and require a systematic approach to target extreme events.
The critical wave groups method (CWG) has been implemented with CFD, and the integra-
tion of high fidelity simulations with extreme event probabilistic methods has been previously
showcased. The implementation of CWG with CFD is achieved by embedding deterministic
wave groups into previously run irregular wave trains such that the motion state of the ship
at the moment of encountering the wave group is known. Embedding the deterministic wave
groups into an irregular wave train results in a composite wave train that can be evaluated with
numerical hydrodynamic simulation tools such as CFD, or even a model test. Though the CWG
method does allow for less simulation time than a Monte Carlo type approach, the large number
of runs required may still be cost-prohibitive. The objective of the present work is to develop an
approach where a limited set of expensive simulations or experiments build a time-accurate long
short-term memory (LSTM) neural network model that rapidly identifies critical wave groups
that lead to a response exceeding a specified threshold. This paper compares the LSTM model-
ing approach of building a single neural network for all wave groups to establishing an ensemble
of neural networks, each responsible for wave groups with specific parameters. The ensemble
approach showcases better accuracy, a higher convergence with respect to data quantity, and
produces responses that are representative of the CFD simulations.

1



Kevin M. Silva and Kevin J. Maki

1 INTRODUCTION

The characterization of extreme ship responses relies heavily on the ability to resolve the
hydrodynamics of the wave-body interaction accurately as well as predict the probability of
their occurrence. State-of-the-art computational fluid dynamics (CFD) tools have been shown
to simulate several ship hydrodynamics problems related to extremes effectively, such as the
work with the Design Loads Generator (DLG) in [1] for large roll and capsizing and broaching
simulations in [2]. Analysis with CFD strives to provide a more quantitative depiction of extreme
events without the empiricism and modeling inherently required by more efficient linear and
nonlinear potential flow methods. However, with higher fidelity comes larger computational
cost. The computational cost renders CFD impossible for Monte Carlo type approaches for
analyzing extremes. Even within probabilistic frameworks like the critical wave groups (CWG)
method leveraged to predict the probability of extremes, utlizing CFD can still be impractical
due to the high computational cost.

Previous work has addressed the computational cost of CFD by building surrogate models of
the dynamical process within a probabilistic framework. [3, 4] utilize Gaussian process regression
(GPR) within a sequential sampling framework to map the wave group parameter space to a
maximum dynamical response. The surrogate model then predicts the extreme statistics. The
present work investigates the ability of a long short-term memory (LSTM) neural network to act
as a surrogate in the framework developed in [5] that implements the CWG method with CFD.
LSTM neural networks have been shown by [6, 7] to reproduce the dynamical response time
histories of vessel motions due to wave excitations successfully. However, previous utilization of
LSTM neural networks in [6, 7] only consider random irregular waves and the resulting motions
are not extreme. Therefore, employing LSTM neural networks for predicting extremes is the
focus of this paper.

The objectives of this paper are to evaluate the ability of an LSTM neural network to predict
extreme motions within the CWG-CFD probabilistic framework developed in [5], to investigate
different neural network modeling approaches, and to understand the effects of training data
quantity on the accuracy of the neural network. The remainder of the paper is organized
as follows. A brief summary of CWG and the CWG-CFD framework from [5] is presented,
followed by an overview of the considered neural network architecture and methodology. Then,
comparisons of different modeling approaches and data quantities are detailed to evaluate the
ability of an LSTM neural network to act as a surrogate for CFD simulations of the extreme
roll of a midship section of the Office of Naval Research Tumblehome (ONRT) hull form.

2 CWG-CFD FRAMEWORK

2.1 Critical Wave Groups Method

The CWG method originates with [8] for regular waves and was recently implemented with
irregular waves in [9]. The key premise of the methodology asserts that the probability of a
response exceeding a threshold is equal to the probability of all of the wave groups and states of
the ship at the moment of wave group encounter that cause a threshold exceedance. The CWG
method formulates this probability by identifying wave group and encounter condition pairs that
result in a near-exceedance of the specified threshold. [9] contains a detailed description and
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derivation of the probability calculations for the CWG method in the present paper.
An important aspect of the CWG method is the construction of deterministic wave groups.

The waves within the group are treated as Markov chains, where each wave is defined by its
height H and period T . The largest wave of the group is selected (Hc, Tc), and the successive
waves are determined based on the statistics for the given wave condition of the most likely
next wave. This process can be repeated for all successive waves to build an entire group of j
waves. This procedure allows entire wave groups to be constructed solely from the height and
period of the largest wave in the group as well as the number of waves preceding and following
the largest wave. However, the present Markov chain construction only produces predictions of
the height and periods of the waves in the group and does not contain any information about
the shape. [10] presented the methodology shown in Fig. 1, where the crest and trough of each
wave are assumed to each be half of the wave height, the time derivative of wave elevation at
the crest and trough is zero to ensure they are peaks, the crest and trough occur at the center
of the interval defined by the successive zero-crossings, and the zero-crossings occur at instances
of half of the current wave period. With the Markov chain and geometric constraints, the entire
waveform is interpolated. A Fourier basis is applied in this paper, like the work of [9], rather
than the Karhunen-Loéve waveform approach in [10] and annotated in Fig. 1. The differences
between the two interpolation methods are negligible in the present work.

Figure 1: Construction of wave groups with Markov chains [10].

Fig. 2 shows an example of a series of wave groups constructed utilizing the methodology
outlined in Fig. 1 with a period of Tc = 15 s for the largest wave and a wave group run length
of j = 3. By only varying the height (Hc) of the largest wave in the group, the Markov
chain methodology describes the successive waves. Thus, the wave groups are characterized by
prescribing Hc, Tc, and j and interpolating between the peaks and troughs with a Fourier basis.
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Figure 2: Ensemble of different wave groups with variation of only the largest wave height.

2.2 Framework

The framework outlined in Fig. 3 was first developed in [5] to implement the CWG method
with CFD. The framework begins with prescribing a seaway of interest and producing random
irregular waves from that particular seaway. The irregular waves are interrogated to determine
the statistics of successive wave heights and periods to form the transition kernels for the Markov
chain wave group construction. Also, CFD simulations of ship motion are performed with the
random irregular waves to calculate the probability of the encounter conditions.

Prob. of Exceedance

Random seaway Construct WG

Find natural IC

Embed WG into IC and 
simulate in CFD

Simulate motions in CFD

Figure 3: Flow chart of CWG-CFD process.

The response time histories of the CFD simulations then identify occurrences of prescribed
encounter conditions and the wave train that caused them. With the exception of the work in [5],
previous implementations of CWG used single degree-of-freedom ordinary differential equations
(ODE) to model roll. For an ODE-based dynamical equation, the state of encounter can be
specified as an initial condition and the wave group can be instantiated impulsively as an input.
For a model test or CFD implementation of CWG, the encounter condition and wave group must
be physically realizable and therefore, cannot start impulsively. Thus, [5] introduced the concept
of the natural initial condition, where simulations of the ship in random waves are scanned for
different encounter conditions. Then, the waves leading to the encounter conditions are identified
and the different deterministic wave groups are embedded into the irregular wave train, such
that the encounter condition occurs at the moment the ship encounters the wave group. Fig. 4
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demonstrates an ensemble of different composite wave trains with the same embedded wave
group. Each portion of the composite wave train that corresponds to the natural initial condition
will result in a different selected encounter condition at the moment the ship encounters the wave
group.
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Figure 4: Ensemble of different waves with corresponding different natural initial conditions for
the same wave group.

After embedding the wave groups into the natural initial condition wave trains, the resultant
composite wave trains are simulated in CFD to determine the corresponding ship response,
identify the critical wave group (that which leads to a threshold exceedance), and to calculate
the probability of exceedance in accordance with the formulation developed in [9]. For each
Tc, j, and encounter condition, a unique value of Hc describes the critical wave group where a
threshold exceedance occurs. Fig. 5 showcases how a critical wave group is identified for a given
response φ exceeding a threshold φcrit. Each curve represents a given wave group elevation and
the corresponding response for a series of composite wave trains that only vary in Hc. For a
given threshold, a unique wave group (shown in red) denotes the critical wave group where any
larger group will also lead to an exceedance. The procedure in Fig. 5 is repeated for every Tc,
j, and encounter condition at each desired response threshold. The identification of the critical
wave group is the most important aspect of the CWG method and requires an accurate depiction
of the ship hydrodynamic response to the prescribed composite wave excitation. Any surrogate
model of the CFD simulations, such as an LSTM neural network, must maintain a sufficient
degree of accuracy to identify the phenomena in Fig. 5.
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Figure 5: Identification of a critical wave group for a given set of composite wave trains utilizing
the same encounter conditions and wave groups with the same parameters Tc and j.
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3 NEURAL NETWORK ARCHITECTURE

The current paper builds off the work of [7] and utilizes an LSTM neural network, trained
with CFD simulations, to predict ship responses. LSTM and Recurrent Neural Networks (RNN)
in general have been applied to different complicated datasets for system identification. In par-
ticular, LSTM neural networks are capable of learning and predicting time-history data and
sequence learning tasks such as natural language processing. LSTM are well suited for the pre-
diction of ship responses due to wave excitation because of their ability to build relationships
between the time-sequencing in datasets. Predictions made by LSTM are not only based upon
the current state, but are also influenced by data at previous time steps as well. The previous
work of [6, 7] has demonstrated the accuracy of the LSTM neural networks for predicting ship
motions simulated by CFD. The work of [6, 7] also showcases how expensive CFD simulations
can be reduced in dimensionality, to only the dynamic ship motion quantities of interest, and
still produce comparable response time-histories. Fig. 6 shows an example neural network archi-
tecture from [7] with five LSTM layers followed by a dense layer. The inputs and outputs of the
model are labeled as xt and ŷt respectively, and t is the time step index that ranges from 1 to
T . The state and output of LSTM cell n at time index t are denoted by Cn

t and hnt respectively.
The dense layer in Fig. 6 employs a linear activation function and outputs the final result of the
LSTM model.

Figure 6: Neural network architecture from [7].

The present paper employs a neural network model architecture similar to Fig. 6 and the
methodology of [7], but with two LSTM layers and 50 cells per layer. The architecture is
implemented with the toolbox Keras [11]. Prior to building the LSTM models, the inputs and
outputs are standardized, such that the mean and standard deviation of each is zero and unity
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respectively. The training of the models use an Adam optimizer [12] with the mean-squared
error averaged loss function shown in Eqn. 1, where ŷ is the prediction of the output sequence
and y is the true value.

L(ŷ, y) =
1

T

T∑
t=1

(ŷt − yt)2 (1)

The models utilize the wave elevation time-history of different composite wave trains at
the inlet of the CFD domain as input into the models, and the output is the heave and roll
response time-histories. The resulting trained neural network model is capable of receiving a
given composite wave train time-history at the CFD domain inlet and provides predictions of
the temporal response of the heave and roll motions. This differs from other work in [6, 7] with
LSTM models, as the composite wave trains will inherently lead to extreme motions by design,
and only random irregular wave excitations were considered in the previous work. The presented
idea also differs from the work of [3, 4] utilizing GPR for extremes, as the LSTM models provide
the temporal response and not only the resulting maximum response to each considered wave
train.

Two modeling approaches are considered in the current paper. Approach A utilizes one
model to learn the input/output relationship between wave elevation and the ship’s heave and
roll. Input into the models with the A approach will include different combinations of encounter
conditions and wave groups. Approach B includes an ensemble of models, where a single model
is built for wave groups with the same parameters Tc and j. Each individual model only trains
with data for wave groups corresponding to its respective Tc and j. When repeated for varying
values of Tc and j, the ensemble of models can predict responses for a range of different wave
groups. The two modeling approaches are investigated in the present paper for both accuracy
and convergence with respect to the total simulations utilized for the training dataset.

4 RESULTS

Different LSTM neural network methodologies are demonstrated for the same case study
considered in [5] of a two-dimensional (2-D) midship section of the ONRT geometry [13] that
is free to heave and roll. The different LSTM neural network models are evaluated for their
ability to represent the dynamical ship response predicted by the CFD simulations for all the
composite wave train excitations that correspond to the full probabilistic analysis of the CWG-
CFD framework in [5]. The present work utilizes the open-source toolkit OpenFOAM R© to
simulate the ship motion response due to nonlinear generated seaways with customized CFD
solvers and libraries developed by the Computational Ship Hydrodynamics Laboratory (CSHL)
at The University of Michigan [14, 15]. The ship section is exposed to a seaway from a JONSWAP
spectrum [16] with a peak enhancement factor γ = 3.3, a significant wave height Hs = 7.5 m,
and a peak modal period Tp = 15 s corresponding to a Sea State 7 [17].

For each composite wave train, the heave and roll predictions utilizing the A and B modeling
approaches are compared against the CFD simulations for training data set sizes of 50, 100, 200,
and 400 simulations of randomly selected composite wave fields. The L2 and L∞ errors, described
in Equations 2 and 3 respectively, compare the accuracy of the response time-histories predicted
for each run, where y = (y1, · · · , yT ) is the values from the CFD simulations, ŷ = (ŷ1, · · · , ŷT ) is
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the prediction made by the LSTM neural network models, i is the index for a single time step,
and T is the total number of time steps. The L2 error measures the accuracy of the models in
an average sense, while the L∞ error is purely considering the maximum difference between the
predictions and the CFD simulations.

L2(y, ŷ) =

√√√√ 1

T

T∑
i=1

(yi − ŷi)2 (2)

L∞(y, ŷ) = max
i=1,··· ,T

|yi − ŷi| (3)

Fig. 7 shows the L2 error comparison for both modeling approaches A and B, trained with
50, 100, 200, and 400 simulations. Each circle represents the response predicted for a single
composite wave train. Overall, the magnitude of the L2 error is less for the B models with
an increase in training data volume clearly demonstrating improvements in the predictions.
However, the A approach shows little difference between the various training data quantities
and results in a larger L2 error in roll. The small difference between training data quantities
indicates that the A approach models are more than likely converged with few runs and the
addition of any other data will not result in a more accurate model. Additionally, since each
composite wave train contains a deterministic wave group meant to excite extreme motions, the
larger L2 errors are more than likely due to the differences in the peak values of each particular
response.
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Figure 7: Comparison of the L2 error for each composite wave run with different LSTM models
and varying amounts of training data.

Fig. 8 shows the L∞ error comparison for both approaches A and B, trained with the different
quantities of data. Similar to the L2 error, the A approach shows very little difference between
varying data quantities, while the B models demonstrate that the addition of data results in a
more accurate prediction of the extreme motion response of both roll and heave.
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Figure 8: Comparison of the L∞ error for each composite wave run with different LSTM models
and varying amounts of training data.

Fig. 7 and 8 show comparisons of the CFD simulations and different LSTM models in a general
sense that evaluates the similarity between the produced time-histories. However, the main
criteria utilized in the CWG method is the absolute maximum response, due to each composite
wave train that is employed to find critical wave groups that correspond to a specific threshold.
The comparisons of absolute maximum roll in Fig. 9 show that for each composite wave train
(depicted by a circle), the B models provide a more accurate depiction of the maximum roll
response, while the A approach under-predicts the absolute maximum roll response on average.
Similar to the comparison of the L2 and L∞ error, the A approach does not seem to be influenced
by the quantity of training data, while increasing the quantity improves the B models.
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Figure 9: Comparison of the absolute maximum roll for each composite wave run with CFD and
LSTM models with varying amounts of training data.
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Fig. 10 further investigates the role of training data quantity and modeling approaches by
comparing the tail of the probability distribution function (PDF) of the absolute value of roll
response resulting from all the composite wave trains. The solid lines in Fig. 10 represent the
kernel density estimates of the PDF, while the shaded regions labeled UCFD and ULSTM represent
uncertainty estimates with an interval of two standard deviations, utilizing the moving block
bootstrap (MBB) procedure discussed in [18]. The B approach demonstrates greater accuracy
than the A approach, especially as the quantity of training data increases. The increase of
training data has little to no effect on the convergence of the predictions for the A approach.
However, the convergence of the B models is clear, and a comparison of the PDF tail like Fig. 10
will be useful in determining the convergence of B models in future work.
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(b) 100 runs
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(c) 200 runs
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Figure 10: Comparison of the tail of the absolute roll PDF for CFD and LSTM models with
varying amounts of training data.

The convergence of the models with training data is critical to the proper implementation of
LSTM neural networks within the CWG-CFD framework for a reduction in total computational
expense. Due to their lack of improvement with increasing training data quantity and diversity,
the Approach A models would more than likely not benefit from any sampling schemes like
those employed in [3, 4] to further reduce computational cost. Considering the current case
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study, the B models can reproduce statistically representative extreme responses with 200-400
CFD simulations. An efficient sampling scheme of selecting the training runs based on model
uncertainty could help reduce the computational cost and ensure the resulting framework is
practical for everyday extreme ship response analyses.

5 CONCLUSIONS

LSTM neural networks are evaluated for their ability to predict extreme ship responses due to
waves generated with the CWG-CFD method. Two different modeling approaches are validated
against CFD simulations for a case study of a 2-D midship section of the ONRT in Sea State
7. The A modeling approach builds a single model for all composite wave trains, while the
B approach develops multiple models that are trained with data from wave groups with the
same parameters Tc and j. The B approach demonstrated a greater accuracy and convergence
with respect to the quantity of training data. Approach A provided reasonable results but
lower accuracy than the B approach and had little dependence on the quantity of training
data. Therefore, the addition of more training data did not improve the quality of the A model
predictions. The B approach is recommended for future work and demonstrates the effectiveness
of the LSTM neural networks when incorporated into the CWG-CFD framework.
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