
IX International Conference on Computational Methods in Marine Engineering
MARINE 2021

I.M. Viola and F. Brennan (Eds)

COMPUTATIONAL PREDICTION OF PROPELLER
CAVITATION NOISE

MILTIADIS KALIKATZARAKIS∗, ANDREA CORADDU∗, MEHMET
ATLAR∗, GIORGIO TANI†, STEFANO GAGGERO†, DIEGO VILLA†,

AND LUCA ONETO?

∗Naval Architecture, Ocean & Marine Engineering
University of Strathclyde

100 Montorse Street, G4 0LZ, Glasgow, UK
e-mail: miltiadis.kalikatzarakis@strath.ac.uk; andrea.coraddu@strath.ac.uk;

mehmet.atlar@strath.ac.uk

†DITEN, Polytechnic School
University of Genoa

Via Montallegro 1, 16145, Genoa, Italy
e-mail: giorgio.tani@unige.it; stefano.gaggero@unige.it; diego.villa@unige.it

?DIBRIS
University of Genova

Via Opera Pia 11a, I-16145 Genova, Italy
e-mail: luca.oneto@unige.it

Key words: Cavitation Noise, Controllable Pitch Propeller

Abstract. The potential impact of ships underwater radiated noise (URN) on marine fauna
has become an important issue. The most dominant noise source on a propeller-driven vessel
is propeller cavitation, and the accurate prediction of its noise signature is fundamental for
the design process. In this work, we investigate the potential of using low-computational-cost
methods for the prediction of URN from cavitating marine propellers that can be conveniently
implemented within the design process. We compare computational and experimental results
on a subset of the Meridian standard propeller series, behind different severities of axial wake,
for a total of 432 experiments.

1 INTRODUCTION

Underwater Radiated Noise (URN) is a subject of increased interest in naval architecture pri-
marily because of its negative consequences on marine life and, secondly, considerations about
the comfort of crew and passengers. The propeller is the most significant noise source, gener-
ating the highest noise levels at frequencies below 200 Hz. While the understanding of various
noise generation mechanisms is still an ongoing area of research, the development of different
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methods to accurately predict ship-generated noise becomes more important and imminent.
Unfortunately, the effect of cavitation and its dynamics on URN is complex, and the current
state of the art does not offer a plausible physically-based URN prediction method that can be
conveniently implemented within the propeller design procedure.

In this work, we evaluate the potential of utilising a Boundary Element Method (BEM) to
predict the pressure distribution on the surface of the propeller blades, and the semi-empirical
methods of [1, 2] to estimate the broadband effects of sheet cavitation, and the radiated noise
due to tip vortex cavitation, respectively. Computational results are compared with experiments
performed on a small, but commercially representative, subset of the Meridian standard series
propeller models. These were tested in the Emerson Cavitation Tunnel, behind different severi-
ties of the axial wake created using three two-dimensional wake screens. A total of 432 unique
combinations of propeller model and inflow conditions are investigated.

The rest of the paper is organised as follows. Section 2 presents the set of computational
methods used to evaluate flow features and the URN for the considered propellers and wake
fields. Section 3 details the experimental data used to evaluate the accuracy of the proposed
methods. Section 4 discusses the process of estimating the parameters of the methods described
in Section 2. Section 5 reports comparative results between the numerical methods and the
experimental data, and Section 6 collects some conclusions of the paper.

2 NUMERICAL METHODS

In this section we give a brief overview of the numerical methods employed to compute the
URN spectra that will be compared with experimental measurements in Section 5.

2.1 Boundary Element Method

We performed unsteady hydrodynamic computations by means of an in-house developed
Boundary Element Method (BEM) that provides an accurate characterisation of the hydrody-
namic field of the propeller at an acceptable computational cost [3]. The BEM models the flow
field around a solid body using a scalar function being the perturbation potential φ, whose
spatial derivatives represent the perturbation potential velocity vector component. Assuming
irrotationality, incompressibility, and the absence of viscosity allows to express the continuity
equation as a Laplace equation for the perturbation potential as ∇2φ(x, t) = 0.

Green’s third identity allows to solve the three dimensional differential problem as a simpler
integral problem written for the surfaces that bound the domain. In the context of non-cavitating
flows, these surfaces include the fully wetted surface of the blades (SB) and of the hub (SH) plus
the trailing wake surface SW . The latter refers to the zero thickness layer, which departs at the
trailing edge of the lifting surfaces, where vorticity is shed onto the downstream flow, as shown
in Figure 1. The solution is obtained as the intensity of a series of mathematical singularities
distributed on the boundaries (i.e. dipoles −φ and sources ∂φ

∂n) which superposition models the
inviscid flow in the entire computational domain [4]:

2πφ (x̃, t) =

∫
SB+SH

φ (x, t)
∂

∂n

1

r
dS −

∫
SB+SH

∂φ(x, t)

∂n

1

r
dS +

∫
SW

∆φwake (x, t)
∂

∂n

1

r
dS (1)

where n is the unit normal, r is the distance between points x̃ and x, and ∆ denotes the
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potential jump (i.e. the net dipole intensity) across the wake surface. The pressure forces, once
the potentials are defined, can be computed by applying the unsteady formulation of Bernoulli’s
theorem.

The numerical solution consists of an inner iterative scheme that solves the non-linearities
related to the Kutta condition at the blade trailing edge and an outer iterative cycle to integrate
over time by shedding in the wake the correct amount of vorticity in accordance with the Kelvin
theorem. To this aim, the key-blade approach proposed by [5] is exploited: only one blade
(plus its wake and portion of the hub) is solved while the influence of other blades is accounted
iteratively during propeller revolutions until a periodic solution after the numerical transient is
achieved. In current analyses we use a surface mesh for the key-blade of 1000 panels plus 360
on the hub. The trailing vortical wake extends for eight revolutions with a spatial discretization
corresponding to an equivalent time step of 6 deg.

2.2 Broadband Effects of Sheet Cavitation

Figure 1: Mesh arrangement on the pro-
peller surface and resulting pressure coef-
ficient. KCD 192 in steady flow, J = 0.6.

To estimate the noise induced by sheet cavitation
we adopt the method of [1], summarised in this Sec-
tion. The sheet cavitation is the typical cavitation bub-
ble shape that occurs when a lifting profile experienced
a significant angle of attack. Due to the low-pressure
values occurring on the leading edge profile portion, a
cavitation bubble (with the shape of a sheet) grows from
the leading edge towards trailing edge until the pressure
exceeds the vapour limit destroying it. Consequently,
attached sheet cavitation on a propeller blade initiates
and grows while an upcoming propeller blade enters into
the wake peak. After the sheet cavity reaches its maxi-
mum volume, it starts to retreat, a process that is asso-
ciated with parts of the cavity breaking off into bubble
clouds. In [1] it is assumed that the volume rate of the
generated bubbles equals the rate at which the sheet
cavity volume decreases:

∂

∂t

(
nc∑
i=1

Vi

)
=

∂

∂t

(
ncV̄

)
= −β ∂

∂t
(Ac) dr, for

∂

∂t
(Ac) < 0

∂

∂t

(
nc∑
i=1

Vi

)
=

∂

∂t

(
ncV̄

)
= 0 for

∂

∂t
(Ac) ≥ 0

(2)

where Vi is the volume on the i-th bubble, with the total number of bubbles for one time-step
being nc. Ac is the cavitating area in a cross section of the blade, and it estimated using the
method of [6] using as input the unsteady pressure distributions computed with the Boundary
Element Method. β refers to the gas / vapour fraction, assumed equal to 0.8 in [1], and ∂r is
the blade span differential.

The average bubble volume V̄ is defined on the basis of the size distribution of the bubbles,
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Table 1: Constants of Gilmore equation [8].

Parameter Symbol Value [1] Units Parameter Symbol Value [1] Units
Polytropic index k 1.4 [-] Bulk constant B 3× 108 [Pa]
Bulk constant n 7 [-] Vapour pressure pv 857 [Pa]
Initial gas pressure pg0 857 [Pa] Surface Tension S 0.0725 [N/m]

which is assumed to be a beta distribution, as

fv(x) =
m

4π

(1− x)m−1

x2
, x =

2R

C Ac
Lc

(3)

in which m is a constant, assumed equal to 0.9 in [1], and x is the non-dimensional bubble
radius. R is the bubble radius, Lc is the cavity length, and C is a constant having the value
of 1.8 in [1]. Assuming that the mean value of the bubble volume remains constant within one
time-step (∆t), the total number of bubbles (∆nc) generated in one time-step for blade length
(dr) is

∆nc = − β
V̄

(Ac(t+ ∆t)−Ac(t)) ∂r (4)

The newly-generated bubbles ∆nc are transported towards the trailing edge at the local speed
of the flow U , and blade pressure is assumed to increase monotonically from the vapour pressure
pv, to the static pressure p0 at the trailing edge. Under the assumption of linear pressure growth,
the ambient pressure at the location of the bubble can be approximated as

p∞(t) = pv +
t

t∗
(p0 − pv) (5)

with t∗ = (c−Lc)/U being the bubble travelling time to the trailing edge, and c being the local
sound velocity.

The computations are performed for every time-step (∆t), and for all radial sections of the
key blade. If the local cavity is shrinking, i.e. a bubble cloud is generated, the total number
of cavitation bubbles and their mean volume are evaluated and discretized into a number of
bubble classes Nc, assumed equal to 5 in [1]. To compute the pressure trace generated by each
bubble class, a bubble dynamics equation must be integrated over time. Several approaches
can be utilised to describe the oscillations of radially symmetric bubbles, e.g the equations of
Rayleigh-Plesset, Gilmore, Keller - Miksis and Flynn [7]. Here we have employed the Gilmore
equation, which is solved for a fixed number of oscillations τc, equal to 3.5 in [1], who further
suggests that the time-traces obtained are offset by a random, uniformly distributed, time lag
within the current time-step, with the assumption that the initial gas pressure in the bubble is
equal to the vapour pressure. The constants used in the Gilmore equation are given in Table 1.

This procedure is applied to every bubble in each bubble class and for all classes, with the
summation of all time traces forming the total field pressure.

2.3 Tip Vortex Induced Noise

To estimate the URN due to tip vortex cavitation, we used the Empirical cavitating Tip
Vortex (ETV) model [2]. ETV is a semi-empirical model, based on the Tip Vortex Index (TVI)
method [9]. TVI relates measured inboard noise levels, to the predicted size of the vortex cavity

4



Miltiadis Kalikatzarakis, Andrea Coraddu, Mehmet Atlar, Giorgio Tani, Stefano Gaggero, Diego Villa,
and Luca Oneto

using a computed circulation distribution on the propeller blade determined by a potential flow
method. The ETV model follows a similar approach, but with the difference that it predicts the
broadband spectrum of URN slightly differently.

The authors utilised the Proctor vortex model [10] for the distribution of the azimuthal
velocity with radius, given by

vθ(r) =


1.0939

Γ∞
2πr

(
1− exp

(
−b
(

1.4rv
D/2

)p))(
1− exp

(
−ζ
(
r

rv

)2
))

for r ≤ 1.4rv

Γ∞
2πr

(
1− exp

(
−b
(

r

D/2

)p))
for r > 1.4rv

(6)

where rv is the size of the viscous core, and D is the propeller diameter. Γ∞ is the vortex strength
for the tip blade section (here considered at r/R = 0.95), computed by the BEM method of
Section 2.1, and averaged over one complete propeller revolution. c1 and b have to be estimated
through a curve-fitting procedure, and ζ = 1.2564, p = 0.75 as suggested in [11]. Regarding
the size of the viscous core, reference values from [12] have been used, scaled according to the
procedure proposed in [13], to account for the different Reynolds numbers.

With the known azimuthal velocity distribution, the pressure distribution can be obtained,
by integrating the momentum equation in the radial direction. This process relates the cavity
size with the cavitation number, from which the cavity size can be estimated. Subsequently,
it is used to estimate the source level spectrum, which is divided in two frequency parts: the
part that is characterised by a hump around the resonance frequency of the vortex cavity fc,
due to the overall growth, collapse and rebounds of the cavity, (Hh(f)), and the part related to
the final phase of the cavity collapse process, which consists of prescribed slopes at frequencies
much lower and much higher than the resonance frequency (Hs(f)), given by

Hh(s) = 20log10

(
sinc

(
f − fc

0.83∆f−6dB

))
, Hs(s) = 10log10

(
2(f/fc)

al

1 + (f/fc)al−ah

)
(7)

where ∆f−6dB is the bandwidth of the hump for which the pressure amplitude is equal to
half the maximum, ah is the slope of the high-frequency, and al is the slope of the low-frequency.
Typical values, as suggested in [14], are al = 4, ah = −2.

The resonance frequency of the vortex fc is derived based on theoretical considerations and
with the use of the experimental data of [15], as

fc =
0.45π2σtipnZ

τKt
(8)

where Kt is the propeller’s thrust coefficient, Z the number of propeller blades, n the rotational
speed, τ is an unknown parameter obtained through curve fitting on the experimental data, and
σtip is the cavitation index based on the resultant velocity at the blade tip.

The source level spectrum is thus modelled as a weighted sum of the two spectral functions
Hh and Hs

SL(f) = Lp,max + 10log10(α10Hh(f)/10 + (1− α)10Hs(f)/10) (9)
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where α is a user-defined parameter, and Lp,max is the maximum level of the hump of the power
density spectrum, given by

Lp,max = ap + 20log10

((τrc
D

)kp √
Z

)
(10)

with ap and kp being empirical constants, to be estimated from experimental data. In [9] kp = 2
is suggested, however in [2] the value k = 3 was reported to provide more accurate results, as
such the same has been utilised in this work.

3 EXPERIMENTAL DATA DESCRIPTION

In order to benchmark the methods described in Section 2, we utilised the large dataset
developed in [16]. The authors performed an extensive measurement campaign by conducting
systematic cavitation tunnel tests at the Emerson Cavitation Tunnel of Newcastle University,
with 6 members of the Meridian Standard propeller series and three variations of the wake
inflow conditions. Based on these propellers and wake inflow conditions, the authors conducted
a full factorial experimental design, including three different levels of tunnel vacuum conditions
(atmospheric, 150 mmHg, 300 mmHg) and eight propeller rotational speeds, with a constant
inflow velocity of 3 m/s, resulting in 432 experiments.

For the sake of completeness, we give a description of the wake inflows in Section 3.1 and an
overview of the propeller models in Section 3.2. A more detailed discussion of the experimental
setup and measurements can be found in [16].

3.1 Wakefields

In [16] suitable wake configurations were selected, based on the criteria suggested by [17].
According to these studies, wakefields with steeper velocity changes produce higher tonal ampli-
tudes of pressure fluctuations, as well as high-frequency contributions from increased dynamic
cavity collapses, both on and away from the blade surface. Based on these observations, the
wake non-uniformity, mean wake, half- wake width and wake depth were controlled, in order to
generate three wakefields that would induce variation in the inflow velocities of varying severity.
These changes would then induce the formation of unsteady cavitation from the collapse and
rebound of cavity volumes at the exit of the wake peak region. The generated wakefields are
shown in Figure 2.

3.2 Propellers

The Meridian propeller series, derived from the proprietary propeller design of Stone Man-
ganese Marine Ltd., is a unique standard series based solely on practical propeller designs for
standardised variations in pitch-to-diameter ratio (P/D), blade area ratio (AE/AO) and number
of blades. Initially, the series comprised four parent models having a combination of four dis-
tinct blade area ratios AE/AO ∈ {0.45, 0.65, 0.85, 1.05}, and five mean pitch-to-diameter ratios
P/D ∈ {0.4, 0.6, 0.8, 1.0, 1.2}. All the propellers had a diameter of 304.8 mm and 6 blades,
with a boss diameter rh = 0.185 × D/2. Currently there are 60 propellers in the series, with
Z ∈ {4, 5, 6}, AE/AO ∈ (0.45−1.05) and P/D ∈ (0.4−1.2). A visual impression of the propellers
is presented in Figure 3.
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(b) W1 (c) W2 (d) W3

Figure 2: Contour plots of axial velocity distributions of the wakefields in the dataset.

(a) KCD 65 (b) KCD 74 (c) KCD 129 (d) KCD 191 (e) KCD 192 (f) KCD 193

Figure 3: Visual impression of the propellers in the dataset.

4 PARAMETER ESTIMATION

Having computed the pressure distribution on the propeller surface with the BEM code of
Section 2.1, we can estimate the URN by the combination of the models discussed in Sections
2.2 - 2.3 for any given experiment, by providing the appropriate parameter values required by
both models.

4.1 Parameter Overview

As discussed in Sections 2.2 - 2.3, both models have a set of parameters whose values arise
either from theoretical considerations, or through a fitting process on experimental data. In
Table 2 we present an overview of the parameters used in the methods of Sections 2.2 - 2.3.

Table 2: Parameters of Sections 2.2 - 2.3.

Method Symbol Equation Value* Method Symbol Equation Value*

Matusiak Model
(Section 2.2)

β Eq. (2) 0.8

ETV Model
(Section 2.3)

b, c1 Eq. (6) -
m, C Eq. (3) 9, 1.8 ∆f−6dB , al, ah Eq. (7) -, 4, -2
τc - 1.8 τ Eq. (8) -
Nc - 5 α Eq. (9) 0.8

ap, kp Eq. (10) -, 3

* [-] indicates that no default value exists, thus a curve-fitting procedure must be used.

The method employed for the prediction of URN from sheet cavitation (Section 2.2) requires
the estimation of 5 parameters. The author in [1] performed a detailed calibration study and
thoroughly discussed the choice of certain parameter values, along with their physical interpre-
tation. However, the calibration process was performed using limited measurements and certain
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parameter values were chosen for reasons of computational cost that do not apply anymore. For
these reasons, certain parameters were chosen for re-estimation directly from the experimental
data, in order to enhance the predictive capabilities of the method.

Note that Table 2 excludes the constants employed in the Gilmore equation, shown in Table
1. We expect non-negligible differences by altering the values of these constants, e.g. by modi-
fying the value for the polytropic index k, which determines if the process is adiabatic (k = 1.4)
or isothermal (k = 1). Moreover, the assumption that the initial gas pressure pg0 is equal to
the vapour pressure can be refined by actually computing pg0, on the basis of the initial (undis-
turbed) pressure outside the bubble, following a suggestion mentioned in [7], and implemented
in [18]. Nevertheless, their values have been kept constant in this work, along with the original
assumption made in [1]. Regarding the ETV model of Section 2.3, 9 parameters have to be
estimated. The author of [2] has performed an extensive analysis on several datasets in the past,
both in model-scale and full-scale data, under a variety of operating conditions. Nevertheless,
the nature of the method requires the implementation of a fitting process in order to improve
predictions.

4.2 Problem Formulation

The parameter estimation process can be formulated as an optimisation problem, with the
decision variables being the values of the necessary parameters, and the objective (cost) function
being an error metric that quantifies the different between the actual and the predicted URN
spectra. Formally, we seek the solution to the following continuous, non-convex problem

arg min
θ

L̂(θ) =
M∑
i=1

l(h(Xi,θ),yi) =
M∑
i=1

(h(Xi,θ)− yi)
2 (11)

subject to: θmin ≤ θ ≤ θmax

where θ ∈ Θ14 is the set of parameters according to Section 4.1 that need to be estimated from
a given bounded space Θ14, and L̂(θ,DM ) is the empirical error of the physical model h on
the dataset DM = {(X1,y1), (X2,y2), ..., (XM ,yM )}, measured according to a loss function
l(h(X,θ),y). As can be seen from Eq. (11), for the latter we have adopted the square loss.
X denotes the model inputs, i.e. the propeller geometry, wakefield and inflow conditions, and
the pressure distribution on the key-blade for one complete revolution, and y ∈ Rp refers to
the measured radiated noise levels at different frequencies that characterise the entire URN
spectrum. Because y is a vector, we have re-defined the loss function as the average absolute
difference between the actual and predicted URN spectra. This is permitted since they both
represent homogeneous quantities, and the average difference between the two can describe the
quality of h in a satisfactory manner.

4.3 Performance Metrics

It is important to note that the experimental data needs to be split into two different subsets,
to objectively evaluate the performance of h. The set DM that is used to tune the parameters
of h by solving Problem (11), and the set TK = {(Xt

1, y
t
1), (Xt

2, y
t
2), ..., (Xt

K , y
t
K)} to evaluate

(test) the performance of h on a real-world scenario. These subsets have been created by
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splitting randomly the experimental data, keeping 70% of the data in DM , and 30% of the data
in TK . Note that TK is required since the error that h would commit over DM would be too
optimistically biased since it has been used to estimate h itself.

For this reason, additional performance metrics are reported in Section 5 that refer only to
the performance of h on TK , in order to provide a complete description of the quality of the
model. With h(X,θ) referring to the outputs of the model arising from the solution of Equation
(11), these include the Mean Absolute Percentage Error (MAPE), computed as the absolute loss
value of h over TK in percentage

MAPE(h) =
100

K

K∑
i=1

∣∣∣∣yti − h(Xt
i)

yti

∣∣∣∣ , (12)

the Mean Absolute Error (MAE), computed as the absolute loss of h over TK

MAE(h) =
1

K

K∑
i=1

∣∣yti − h(Xt
i)
∣∣ , (13)

and the Pearson Product-Moment Correlation Coefficient (PPMCC), which measures the linear
dependency between h(Xt

i) and yti with i ∈ {1, 2, ...,M}, given by

PPMCC(h) =

∑K
i=1

(
yti − Ȳ

) (
h(Xt

i)− ˆ̄Y
)

√∑K
i=1

(
yti − Ȳ

)2√∑K
i=1

(
h(Xt

i)− ˆ̄Y
)2

(14)

where Ȳ = 1
K

∑K
i=1 y

t
i and ˆ̄Y = 1

K

∑K
i=1 h(Xi). Other state-of-the-art error measures exist,

but from a physical point of view, the ones already reported give a complete description of the
quality of the model, therefore we only report these in Section 5.

4.4 Solution Method

Given the nature of the problem, a global Derivative-Free Optimisation (DFO) method must
be utilised, as obtaining or estimating the derivatives of the physical models with respect to
the parameters θ is a computationally and time-intensive procedure. The literature on DFO
methods is quite large, with a variety of algorithms that can solve a diverse class of problems [19].

We have employed Particle Swarm Optimisation (PSO) for a variety of reasons, including
the reduced number of parameters to tune, constraints acceptance and speed in providing good
solutions. Its stochastic properties allow for solution variability and thorough exploration of
the search space in the initial iterations, with a local search behaviour during the final itera-
tions. Finally, it is robust and well suited to handle non-linear, non-convex design spaces with
discontinuities, and is readily available in most numerical platforms. Regarding the algorithm’s
parameters, we applied linearly decreasing inertia with a starting value of 1.15, and set the
velocity of each particle to be influenced by a local neighbourhood of 90% of the entire swarm.
Finally, for the velocity adjustment of each particle between iterations, the relative weighting of
each particle’s best position and the local neighbourhood’s best position were both set to 1.5.
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(a) MAE (b) MAPE (c) PPMCC

Figure 4: Histograms of performance metrics.

(a) Most accurate predictions. (b) Least accurate predictions.

Figure 5: Computational and experimental results on two different cases.

5 SIMULATION RESULTS

In Figure 4, we summarise the performance metrics on TK , for the parameter values optimised
on DN , and the parameters reported in literature, as presented in Table 2. Overall, the optimised
parameters present a remarkable performance improvement over the default values, with MAE =
4.68 dB, MAPE = 4.32%, and PPMCC = 0.85, whereas for the default parameters, the metrics
are equal to 8.61dB, 8.23%, and 0.69 respectively. Considering the error distributions of Figure
4, it is clear that also the variance of all three metrics has decreased, indicating more robust and
stable predictions. With the default parameter values, the MAE varies between 4.6 and 21 dB,
the MAPE lies between 4.3% - 24%, and PPMC has a spread between 0.35 - 0.8. However, the
optimised parameter values show consistently accurate predictions, with MAE varying between
2.8 and 7.5 dB, MAPE lying between 2.6% - 7%, and PPMC lying between 0.46 - 0.96.

We report comparative results between the measurements and computed URN spectra on
two specific experiments in Figure 5. Figure 5(a) corresponds to the experiment for which com-
putations and measurements show the highest agreement, and Figure 5(b) corresponds to the
experiment with the highest discrepancy. It is clear that in both cases the default parameter
values result in seemingly uncorrelated, with respect to the measured URN, predictions. How-
ever, the optimised parameter values show remarkable agreement for Figure 5(a), with a more
plausible trend for Figure 5(b). Although not all experiments are presented for the sake of
brevity, it suffices to state that the overall agreement lies between these two cases.

It is worth mentioning that the overall difference between the default and the optimised
parameter values for the ETV model is limited, with deviations less than ±7%, in line with their
physical interpretation. On the other hand, notable differences are observed for the parameters
of the Matusiak model, which are worthy of attention due to their inherent physical meaning.
More specifically, the parameter τc, which controls the number of oscillations for which bubble
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motion is simulated, has an optimal value of 350. Physically, this implies that bubble motion
was simulated as long as possible, until the oscillations have been essentially dampened out.
Furthermore, the fractal order m of the size distribution of the bubbles, which signified the
complexity of the phenomenon [1], was also reduced from its initial value of 9, to the value of 2.
Moreover, the gas / vapour fraction β was reduced to 0.15, and the parameter C, which controls
the cavity thickness at the point of break-off, was increased to a value of 6 (from its initial value
of 1.8), signifying the presence of larger bubbles. Finally, the number of bubble classes (Nc) also
increased dramatically from its initial value (equal to 5) to the value of 500, which corresponds
to the upper limit set during the optimisation process. This implies the requirement that each
bubble be treated individually, or the use of a very fine discretization grid, to obtain accurate
results.

It is interesting to note that similar results have also been reported in [18], in which the
authors applied the same method to measurements taken from a container ship, which can be
considered as a further validation of the results obtained in this work. However, it is worth
noting that the simulation of bubble motion for a much higher number of oscillations than the
one reported in [1], along with the finer discretization grid for the bubbles (by adjusting the
parameter Nc), resulted in an increase in computation time by a factor of 12.

6 CONCLUSIONS

In this work, a methodology for the prediction of URN by a cavitating marine propeller has
been presented and discussed. The methodology involves modelling and computational efforts
that are compatible with the typical propeller / ship design process, making it suitable for design
applications. The comparison between computations and experimental measurements indicates
that the methodology employed is able to capture the most relevant aspects of the propellers’
acoustic behaviour, despite a number of limitations associated with the assumptions taken. The
combination of the ETV model, responsible for predicting noise due to a cavitating tip vortex,
and the model of Matusiak for the broadband effects of sheet cavitation, can be a valuable
tool for practical evaluation of propeller cavitation noise, showing good overall agreement with
measurements. However, they are influenced by several empirical constants, the effects of which
warrants further investigation.
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