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Dino Zrnić, Günter Brenn

Institute of Fluid Mechanics and Heat Transfer, Graz University of Technology, Graz, Austria
*Corresponding author email: guenter.brenn@tugraz.at

Abstract
Non-linear oscillations of a viscous Newtonian liquid drop are investigated for fundamental in-
terest and for their relevance for transport processes across the drop surface. Theoretically we
adopt the weakly non-linear approach to account for the influence of the non-linear motion on
the oscillations. Non-linearities gain importance by strong drop deformation and depend on the
initial internal flow. Experiments show a different behaviour for large and for small oscillation
amplitudes, seen weakly in the oscillation frequency, but strongly in the damping rate.
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Introduction
Shape oscillations of drops have been studied in science since more than 140 years. Drop
shape oscillations are of interest, since they influence both the transport of heat and mass
across the drop surface, and the aerodynamic drag of the drop. In the appendix to his paper on
the capillary phenomena of jets, Rayleigh presented an analysis of linear shape oscillations of
an inviscid drop in a vacuum around a spherical equilibrium state [1]. One result is the equation
for the angular oscillation frequency of the drop deformed according to a mode m counting
the lobes along the drop surface. Lamb generalised Rayleigh’s result by accounting for the
drop viscosity and for the density of the ambient medium [2, 3]. The threshold Ohnesorge
number Oh = µ/(σaρ)1/2 of the drop for the onset of aperiodic behaviour is predicted. A
further generalisation of the analysis of linear drop shape oscillations was achieved in [4] by
account for both the viscous and the inertial influences from the ambient medium hosting the
viscous oscillating drop. The important aspect of the initiation of the drop oscillations in a
drop initially at rest was analysed in [5], treating the motion as an initial-value problem. It was
shown that the analyses of linear drop oscillations by the normal-mode approach may miss
the fact that, in a range of Ohnesorge numbers, oscillations starting aperiodically may turn
into periodic with ongoing time. The most important results of the research are the angular
frequency and damping rate of the oscillation, as well as the shapes of the deformed drops in
linear motion. Non-linear effects reveal a dependency of the oscillation frequency on the initial
drop deformation from the spherical state. Tsamopoulos & Brown were the first to investigate
this for inviscid drops and bubbles [6]. They found shapes deviating from the linear results, and
angular frequencies decreasing with increasing oscillation amplitude, for a maximum prolate
aspect ratio of 1.4 by approximately 5%. The sinusoidal dependency of the shape on time is
lost with increasing oscillation amplitude, but still the predicted motion remained periodic.
The aim of the present work is to investigate non-linear viscous drop shape oscillations by
the weakly non-linear method of analysis up to second order. The interest focuses on the
dampening of viscous drop oscillations due to non-linear viscous effects. This advances the
recent analysis for the inviscid drop [7].

Theory - formulation of the problem
We study the weakly non-linear shape oscillations of a viscous liquid drop.The drop is assumed
to be axisymmetric with respect to the coordinate ϕ of the spherical coordinate system. The liq-
uid is treated as incompressible and Newtonian. Dynamic influences from an ambient medium
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is neglected, i.e. the drop is placed in a vacuum. Body forces are not accounted for. The
problem is formulated in spherical coordinates to account for its geometry.
The variables and equations of change are non-dimensionalized with the undeformed drop
radius a, the capillary time scale (ρa3/σ)1/2 and the capillary pressure σ/a, where ρ is the liquid
density and σ the liquid interfacial tension against the vacuum. The drop surface is described
by its radial extension rs(θ, t) = 1 + η(θ, t), with the non-dimensional deformation η against the
undisturbed spherical shape.
For the problem at hand, the equation of continuity and the two components of the momentum
equation in the radial (r) and polar angular (θ) directions read
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where Oh = µ/(σaρ)1/2 is the Ohnesorge number, with the liquid dynamic viscosity µ. The
solution of the above set of equations is subject to the kinematic boundary condition

ur =
Dη
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r
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at r = 1 + η , (4)

and the zero-shear stress boundary condition

(~n · τ)× ~n = ~0 at r = 1 + η (5)

where the outward unit normal vector ~n is given as

~n =
1

|~∇F |
~∇F with F = r − 1− η(θ, t) = 0 (6)

and the viscous extra stress tensor τ . One further boundary condition states zero normal stress
at the drop surface, i.e.,

−p+Oh (~n · τ) · ~n+
(
~∇ · ~n

)
= 0 at r = 1 + η (7)

We obtain the divergence of the normal unit vector in this equation as
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Initial conditions state that the drop surface is initially deformed and at rest.
For analyzing these equations with the boundary and initial conditions in a weakly non-linear
form, all the flow field properties are expanded in power series with respect to the deformation
parameter η0 � 1. As an example,

ur = ur1η0 + ur2η
2
0 + . . . (9)
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and the radial velocity component for use in the boundary conditions reads

ur|r=1+η = ur|r=1 +
∂ur
∂r

∣∣∣∣
r=1

η + . . . (10)

Using this approach, the initial deformed drop shape, which is governed by a Legendre polyno-
mial of degree m and the amplitude η0, reads

rs(θ, 0) = 1 + η(θ, 0) = 1 + η0Pm(cos θ)− η20
1

2m+ 1
− η30

6

∫ 1

−1
Pm(cos θ)3d(cos θ)∓ . . .(11)

Substituting these approaches into the equations (1) - (3) and into the boundary conditions (4),
(5) and (7), and representing the flow properties and their derivatives as given in (9) and (10),
we obtain sets of first- and second-order equations of motion, with the boundary conditions,
consisting of all the terms with the deformation parameter η0 to the first and second powers,
respectively.

First-order equations
The first-order equations consist of all the terms in the above expansions with the parameter η0
to the first power. The first-order continuity and momentum equations read
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For the boundary conditions of first order to be satisfied at r = 1 we obtain
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kinematic (15)
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Furthermore, the initial conditions of first order are

η1(θ, 0) = Pm(cos θ) and
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(θ, 0) = 0 (18)

The first initial condition determines the initial shape of the deformed drop by a Legendre poly-
nomial Pm of order m.

Second-order equations
The second-order equations are obtained as all the terms in the above expansions with the
parameter η0 squared. The second-order continuity and momentum equations read
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The boundary conditions of second order for the kinematics, and for zero shear and normal
stresses, at r = 1 are
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Furthermore, the initial conditions of second order are
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The following section presents solutions to these sets of first- and second-order equations.

Solutions
First-order solutions
The first-order equations describe the linear problem. The two-dimensional flow field allows the
method of the Stokesian stream function to be applied for determining the velocity field. The
streamfunction ψ(r, θ, t) is defined by its relations to the velocity components ur1 and uθ1 [8]
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The first-order drop surface deformation is governed by the Legendre polynomial of the initial
deformation. The solution is therefore sought in the form

η1 = η̂1Pm(cos θ)e−αmt (27)

with the first-order initial surface amplitude η̂1 and the complex angular frequency αm of the
drop for mode m.
Eliminating pressure from the first-order momentum equation in a vectorial form yields the
differential equation for the stream function(
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The solution may be represented as the sum ψ = ψ1 + ψ2, with [9]

ψ1 ∝ rm+1 sin2 θP ′m(cos θ)e−αmt and ψ2 ∝ qrjm(qr) sin2 θP ′m(cos θ)e−αmt (29)

where P ′m(cos θ) is the first-order derivative of the Legendre polynomial Pm with respect to
its argument and jm(qr) the spherical Bessel function of the first kind and order m, with q =√
αm/Oh. The radial and angular first-order velocity components are obtained as
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Figure 1. Solutions of the characteristic equation for varying Ohnesorge number. Left - imaginary and right - real
part of the nondimensional frequency. The critical Ohnesorge number for mode m = 2 has the value 0.7665 [5].
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respectively. The two integration constants C1m and C2m are determined by the first-order kine-
matic and zero shear stress boundary conditions.The first-order pressure field p1 is obtained
by integration of one component of the momentum equation as

p1 = −C1m(m+ 1)αmr
mPm(cos θ)e−αmt . (32)

The characteristic equation for the complex angular frequency αm is derived from (24) as
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with αm,0 = [m(m − 1)(m + 2)]1/2. The spherical Bessel functions are taken at the value q of
their arguments. The equation is identical to the results in [2] and [10].
The characteristic equation exhibits pairs of complex conjugate solutions, as depicted in Fig.
1 for the first three deformation modes m = 2, 3, 4. For Ohnesorge numbers below the critical
value (of 0.7665 for mode m = 2 [5]), the drop performs damped shape oscillations. For greater
Ohnesorge numbers, the drop motion is aperiodic.
The existence of pairs of solutions of the characteristic equation requires representation in the
first-order solutions. We therefore formulate the first-order deformation of the drop surface as
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The first-order initial conditions (18) require that initially the drop surface is governed by the
function Pm(cos θ) and is at rest. For the amplitudes η̂(p)1 and η̂(n)1 , these conditions reveal
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where we denote the solutions with positive and negative imaginary parts by superscripts (p)
and (n), respectively. The first-order radial velocity component ur1, as an example, reads
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with the definition of Qm = jm+1(q)/jm(q) with q(p) and q(n) for α(p)
m and α(n)

m .

Second-order solutions
We derive the second-order solutions from pressure. The second-order pressure is sought as

p2(r, θ, t) = p21(r, θ, t) + p22(r, θ, t) (37)

where subscript 21 indicates the solution of the second-order equations system including the
first-order term products, and subscript 22 the solutions of the homogeneous system. The
length restrictions to this conference contribution make a full presentation of the second-order
solutions impossible.
The solutions with subscripts 21 are first determined. Eliminating the second-order velocity
from the second-order equations of motion (19)-(22), we obtain the differential equation for the
second-order pressure p21
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which we re-formulate using the Lamé identity and the properties of the present first-order
velocity field into the form
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This is a Poisson equation for the modified pressure P21 = p21 + ~v21/2, found in the cylindrical
formulation for a jet in [11]. The structure of the solution in terms of its dependency on the polar
angular coordinate and on time is determined by ~v21, and by the first-order term products on the
right-hand side of equation (39).
In solving the Poisson equation, the general solution of the homogeneous (i.e., the Laplace)
equation, for the time dependency according to exp(−2α(p)

m t), reads

P21,H = −
∞∑
l=0

D
(p)
21lr

lPl(cos θ)e−2α
(p)
m t (40)

The particular solution of the Poisson equation is found representing products of Legendre
functions on the right-hand side of the equation by series expansions of Legendre polynomials.
Details of the derivation of those solutions will be presented elsewhere [12]. From the pressure
field p21 and the equations of motion (19)-(22), the corresponding second-order velocities ur2
and uθ2 are determined. It follows the determination of the 21 contributions to the surface
deformation η21 corresponding to the three behaviours in time. Due to space limits, the details
will be presented elsewhere [12].
The second contributions to the second-order solutions, with subscript 22, are determined from
the homogeneous forms of the equations (19)-(22). This set of equations has the same struc-
ture as at first order, where the complex angular frequency αm is replaced by a different α2k,
and the deformation amplitude of the drop surface η̂1 by η̂22k. The general solution of the
Laplace equation is given by a series expansion in all the eigen-solutions with subscript k. The
new complex angular frequency α2k is obtained as a solution of the characteristic equation (33),
but with the mode m replaced by the summation index k.

Results and discussion
This section presents the weakly non-linear analysis results for initial modes of deformation
m = 2, 3 and 4. The analysis, however, allows for modes m > 4 also. We first quantify the
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Figure 2. (a) Maximum relative drop volume deviation as a function of the deformation parameter η0; kinetic,
surface and total energies as functions of time for Oh = 0.1, η0 = 0.3. (b) Percentage of the drop oscillation period

spent in a shape elongated along the symmetry axis, as a function of the deformation parameter. T&W(1982)*
denotes experimental data by [13] for initial steady prolate drive, and T&W(1982)** for initial static prolate shape.

conservation of the drop volume as a function of deformation amplitude and time. The non-

dimensional drop volume equals V (t) = (2π/3)

∫ 1

−1
r3s(x, t) dx. The relative volume deviation

from the exact value Vs = 4π/3 is

(V (t)− Vs) /Vs =: R(η0, t) =
1

2

∫ 1

−1

[
r3s(x, t)− 1

]
dx , (41)

where x = cos θ. The values of R are positive, oscillate in time and increase with η0. The top
diagram in Fig. 2 (a) presents the relative volume deviation for the modes of initial deformation
m = 2, 3 and 4 at the instant of time t = tmax of its largest value. For a given mode of initial
deformation, the relative volume deviation increases with the deformation parameter η0. For
η0 = 0.4 and m = 2, 3 and 4, R at tmax is around 2.5%, 0.4% and 0.8%, respectively.
Calculation of the energy contents of the drop gives insight into the transformation of the me-
chanical energy forms during the oscillation and shows the dissipation of mechanical energy.
These predictions are relevant for the transport processes across the drop surface. The kinetic
Ek, surface Es and total energies Etot for the example of Oh = 0.1 are shown in Fig. 2 (a). The
values in the diagrams are non-dimensional with the surface energy 4πa2σ. Corresponding to
the truncated series expansions, the calculation of the energies is for second order. At the
initial time, the droplet is the most deformed and, consequently, contains the maximum surface
energy. The initial conditions ensure quiescent drop surface. The bulk of the drop, however,
is in motion. The sum of the kinetic and surface energies, which are continuously transformed
into each other, reveals the total energy as a function of time. Due to dissipation, the latter
energy decreases monotonically in time, as expected. The rate of decrease is greatest when
the rate of dissipation is highest, and at the beginning of the motion it is largest for the highest
deformation mode studied.
One well-known non-linear effect in drop oscillations with m = 2 is an asymmetry of the times
the drop spends in the oblate and prolate deformed states. One expects this effect to be less
pronounced in the present viscous than in the inviscid case. The second-order solutions can
represent this phenomenon. In Fig. 2 (b), the solutions from the weakly non-linear theory
(WNLT) for m = 2, 3 and 4 show the time the drop spends in the elongated form, determined
from the first oscillation. The relatively high Ohnesorge number of 0.1 yields only a few os-
cillations, where the second and following periods exhibit very small amplitudes and thus do
not show non-linearities. The numerical results by [14] and [15] also show the first oscillation
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only, but start the simulations from the drop bulk at rest. Our results for time asymmetry of the
m = 2 oscillations agree very well with the experimental work by [13] who investigated large-
amplitude oscillations for different initial states. Since WNLT includes an initial bulk drop motion,
it matches the experimental results for oscillations starting from the steady prolate drive state
(T&W(1982)*). The excess time increases with increasing initial deformation mode number.

Conclusions
A weakly non-linear analysis of shape oscillations of a Newtonian, axisymmetric liquid drop
in a vacuum was performed. The volume deviation during the oscillations depends on the
deformation parameter and on the mode of initial deformation. Deviations are below 2.5%
of the spherical volume in all cases investigate. The second-order solutions represent the
time asymmetry in the oscillations, revealing the excess time spent in an elongated drop form
for different initial modes. For m = 2 and initially driven oscillations, the results are in good
agreement with experimental literature [13]. The present results reveal the exchange between
the kinetic and surface energies, and the dissipation of total energy in time, where dissipation
rates are highest when velocities are largest.
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