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Abstract
A novel volume of fluid (VoF) model based on an explicit volume diffusion (EVD) concept has
been developed for interfacial flows. The EVD transport equations are derived by Favre vol-
ume averaging of VoF equations over a physically-defined volume length scale. This physical
length scale is linked to the boundary layer thickness at the interface but is independent of the
numerical grid size. A volume diffusivity and a related volume viscosity as functions of volume
scale parameters have been derived to model the sub-volume flux and stress, respectively. A
closure for volume averaged surface tension is also provided where a surface density of the
physical volume is involved and needs to be closed. Here, a volume surface density transport
equation is directly solved and this analogises to the one inherent to Σ-Y model. The full EVD
model (EVD coupled with Σ-Y ) is validated for a laboratory airblast acetone spray jet. The EVD
equations are discretised on the numerical grid. Keeping the volume length scale constant
while reducing the numerical grid size, volume diffusion overwhelms the diminishing numerical
diffusion leading to numerical convergence. The accuracy of the EVD method is evaluated by
comparison to the available experimental data of liquid volume fraction.
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Introduction
The interfacial flow including primary spray atomisation is featured by a sharp interface between
two immiscible fluids. The numerical simulations of interfacial flows have evolved for decades
with the improvements of high-performance computational resources and the development of
numerical methods. Volume of fluid (VoF) [1], level set (LS) [2] and diffuse-interface (DI) [3]
are three prominent methods. Since the VoF method is intrinsically mass conservative and its
numerical solution is generally stable, we select it for further development. One main drawback
of the general VoF method is the numerical diffusion due to the discretisation of VoF governing
equations which leads to the continuously varying volume fraction values between 0 and 1.
Geometric VoF by sharpening and reconstructing surfaces [4] is required for the reduction of
the intrinsic numerical diffusion. In spite of surface sharpening, direct/detailed numerical sim-
ulations (DNS) with highly refined grids are generally needed to minimise numerical diffusion
and to resolve the key topological features of the interface [5], but the computational cost is
enormous.
Large eddy simulations (LES) requiring much lower grid resolution for only resolving large eddy
scales have the potential to vastly reduce the computational expense. However, accurate clo-
sures are required to close the sub-grid small scale fluctuations. Many LES of turbulent inter-
facial flows simply applied a conventional turbulence filter to the VoF transport equations and
used standard turbulent viscosity and turbulent diffusivity models to close sub-grid stress and
flux, respectively [6, 7]. However, interfacial flows are conceptually different from single phase
flows in several aspects such as: (i) the energy cascade and decay are not statistically univer-
sal across a sharp interface; (ii) the smallest length scale is unknown and approaches zero; (iii)
not only turbulence, but also inhomogeneities induced by the dynamics of the interface lead to
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sub-grid fluctuations. Especially for interfacial flows in low Reynold number turbulent and lami-
nar flows, the sub-grid turbulent diffusivity is not sufficient for modelling the sub-grid fluctuations
induced by inhomogeneous phases due to the existence of the interface. Additionally, the in-
trinsic numerical diffusion of discretised VoF equations is amplified in LES for larger grid scales
which is significant but has rarely been investigated. Our recent work [8] has demonstrated that
rigorous numerical convergence cannot be achieved by this turbulence filtering VoF (TF-VoF)
approach. A hybrid turbulence filtering and artificial compression method (TF-AC) was devel-
oped in [9] where an artificial compression term [10] is used to minimise numerical diffusion in
regions near the continuous interface. Beyond these regions, the turbulent diffusivity model is
alternatively used to describe the sub-grid dispersion of various liquid fragments. This TF-AC
model was also evaluated in our recent work [8] and was demonstrated to be grid dependent
leading to diverging results on refined grids.
Wang et al. [11] developed a new approach based on the basic VoF algorithm which is called
explicit volume diffusion (EVD). This model can be applied to laminar and turbulent flows and
is compatible with LES. An explicitly-defined physical volume length scale is introduced over
which VoF transport equations are averaged. This volume averaging operation is conceptually
different from turbulence filtering in that it attenuates the fluctuations induced by both interface
dynamics and turbulence. Volume averaging effectively smears the interface relative to the
volume length scale rather than the grid scale, and the unresolved interface dynamics need
to be modelled. Unclosed sub-volume flux, sub-volume stress and volume averaged surface
tension force terms appear in the EVD transport equations. The sub-volume flux is closed by
a gradient diffusion model with a volume diffusivity coefficient. Similarly, a volume viscosity
model augmented by an effective turbulent viscosity is derived to close the sub-volume stress.
The closure for volume averaged surface tension force has been also derived where a volume
surface density parameter is involved. The volume surface density was modelled based on
fractal properties of wrinkled sub-volume interfaces as a first attempt [11]. The present study
proposes to close it by a volume surface density transport equation which is analogous to
the one inherent to the well-known Σ-Y model [6, 12]. For the EVD simulations, the physical
volume averaged equations are discretised on the LES grid. When refining the grids, the explicit
volume diffusion is still computed by the parameters taken from the constant physical volume.
This physical defined volume diffusion is employed to account for a "diffusion" between the two
immiscible fluids. Meanwhile, numerical diffusion is reduced on the small grid scales which will
be overwhelmed by volume diffusion leading to numerical convergence. The accuracy of the
EVD method is evaluated using an airblast atomising acetone spray jet, for which high quality
measurements of volume fraction of liquid are available.

The explicit volume diffusion (EVD) model
The EVD model is obtained by averaging the VoF equations over physically-defined volumes
(V ) with a characteristic length scale of lV ∼ V 1/3. Applying the Favre volume averaging
operator to instantaneous VoF equations leads to [11]
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The volume averaged single fluid density and viscosity are calculated by ρ = αρl+(1− α) ρg, µ =
αµl + (1− α)µg, respectively. Here, the superscripts, l and g, represent liquid and gas, re-
spectively. The Favre volume averaged volume fraction is directly solved and the physically
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meaningful Reynolds volume averaged volume fraction can be obtained by using the relations
for the conservation of liquid mass, α = ρα̃/ρl. Closures have been derived for the unclosed
sub-volume stress, τvaij , the volume averaged surface tension force, Fs,i in Eq. (2) and the sub-
volume flux, Jvaα,i in Eq. (3) in [11]. As in [8], only brief introductions of these sub-volume models
are presented in this paper. Using the bimodal probability function concept, the closure for the
sub-volume flux can be modelled by

Jvaα,i = ρflα′′u
′′
i = ρα̃ (1− α̃)

Ä‹uil − ‹uigä = −ρDV
∂α̃

∂xi
, (4)
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is called the explicit volume diffusion coefficient. The parameters involved for computations of
DV are directly taken from the constant physical volume. When refining the grid for solving
the discretised volume averaged transport equations, DV does not change statistically which
accounts for a physical "diffusion" between two immiscible fluids. This volume diffusion over-
whelms the decreasing numerical diffusion leading to numerical convergence. The difference
between the mean velocities of liquid and gas, ‹uil − ‹uig, is called the mean drift velocity that
essentially leads to the "diffusion" between the two phases. The coherent function, |Q/E|, char-
acterises the relative magnitudes of vorticity and strain [13]. The second invariant of the velocity
gradient tensor, Q, the magnitude of a velocity gradient tensor, E and the vorticity tensor, fiWij

are given by

Q =
1

2

ÄfiWij
fiWij −›Sij›Sijä , E =

1

2

ÄfiWij
fiWij + ›Sij›Sijä , fiWij =

1

2

Ç
∂‹ui
∂xj
− ∂ũj
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respectively. High values of |Q/E| occur in homogeneous or strong shear turbulence and lead-
ing to high values of DV and strong dispersion of the interface. Low turbulence and laminar
conditions require low |Q/E|. An interesting limit occurs where the interface curvature ap-
proaches zero with |Q/E| → 0 and as a result DV → 0. This limiting behaviour ensures that
there is not premature dispersion of the liquid into the gas and this is particularly important
along continuous interfaces prior to the appearance of curvature generating instabilities. This
ensures DV based on interfacial physics which increases smoothly as the interface curvature
increases. Another limit occurs away from the interface where the term

»
α̃ (1− α̃) in Eq. (5)

goes to zero and therefore DV = 0. This is correct because α is a constant (either zero or
one) in the interior of the pure fluid streams and therefore sub-volume flux cannot exist. A priori
analysis against resolved simulations in Wang et al. [11] suggests that the modelling constant
Cαu = 0.25.
The closure for sub-volume stress is approximated by

τvaij = −2ρ
Ä
νV + νefft

ä ›Sij . (7)

An explicit volume viscosity coefficient is introduced as νV = DV ScV , where ScV = 3 is an
explicit volume Schmidt number whose value was also determined by a priori analysis [11]. As
indicated by the closure of DV , in the interior of the pure liquid and gas phases and at any place
where |Q/E| → 0, DV = 0 thus νV = 0, however, sub-volume turbulent velocity fluctuations can
exist at those locations and τvaij is reverted to the sub-filter turbulent stress. This is characterised
by an effective turbulent viscosity, νefft = [1− 4α̃ (1− α̃)] νt, where νt can be modelled by the

Smagorinsky model [14], νt = Csl
2
V

√
2›Sij›Sij . Here, the turbulent filter length scale is set to

be the same as the volume length scale. The interface sensor [1− 4α̃ (1− α̃)] is a smooth
blending function inspired by the flame sensor function employed in the artificially thickened
flame model to account for the effects of turbulence on premixed flame interfaces. The low
sensitivities of Cαu and ScV have been demonstrated in [11].
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The continuum surface tension model [15] is widely used for LES and DNS of spray atomisation
[5, 6, 7]. However, modelling of sub-grid fluctuations of the surface tension force is a long-
standing challenge which is usually neglected in most of LES studies [6, 7]. We derive a model
for volume average surface tension where a volume surface density, Σ, is involved [11],

Fs,i ∼= σκniΣ. (8)

Here, κ = −∇ · n denotes the curvature of the volume averaged interface with the normal
direction n = ∇α/|∇α|. A volume surface density, Σ, is generally defined as the physical
volume divided by the sub-volume total area of interfaces which is modelled based on fractal
properties of wrinkled sub-volume interfaces as a first attempt [8, 11]. A new approach to close
Σ is presented as follows.

Coupling EVD with Σ-Y model
Instead of using the fractal wrinkled sub-volume interface model, the volume surface density in
Eq. (8) can be solved by a transport equation similar to the one inherent to Σ-Y model. To be
consistent with the Favre volume averaged volume fraction, ‹Ω is defined as the surface area
based on the mass in the physical volume. Their relationship is given by Σ = ρ‹Ω. The transport
equation for ‹Ω can be written as [12]

∂ρ‹Ω
∂t

+
∂ρ‹Ω〈ui〉s
∂xi

= SΩ, (9)

where 〈ui〉s represents the surface averaged velocity, SΩ is the source term. The surface
averaged velocity can be decomposed into the bulk velocity ‹ui and their deviation 〈ui〉s − ‹ui
leading to
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The term 〈ui〉s−‹ui can be considered as the volume diffusive velocity of surface density. On the
heavy fluid side, the boundary layer thickness is very small [16] such that the average interface
velocity can be approximated as the average bulk velocity of the heavy fluid in the volume,
i.e. ‹uil = 〈ui〉s, and thus the sub-volume diffusive velocity of surface density becomes ‹uil − ‹ui.
Substituting the relationship ‹ui = α̃‹uil+(1− α̃) ‹uig into Eq. (4) leads to the sub-volume diffusive
flux of volume fraction being Jvaα,i = ρα̃

Ä‹uil − ‹uiä. Therefore, the sub-volume diffusivity velocity
for volume fraction is also ‹uil − ‹ui which is the same as the approximated diffusive velocity of
surface density. Therefore, the volume diffusion coefficient can also be employed for modelling
the sub-volume dispersion of surface density,
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The term, ‹Ω, is decomposed into a minimum part, ‹Ωmin, which implies the presence of an inter-
face simply due to the coexistence of liquid and gas phases, and an additional sub-volume dy-
namic part,›Ωd, due to the wrinkling and stretching induced by sub-volume velocity fluctuations,
and the coalescence and breakup of liquid structure interactions. Here, ‹Ωmin is approximated
by a algebraic relationship, ‹Ωmin = CΣmin

»
α (1− α)/lV /ρ, where the modelling constant is

suggested as CΣmin = 2.4 [6]. The transport equation can be solved to obtain ›Ωd,
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was proposed as 0.4 [17]. The characteristic volume time scale reads as τV =
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1/
»›sij›sij . In order to maintain model consistency, the equilibrium surface density is also pro-

posed to contain a sub-grid scale contribution and the minimum surface density, Σ∗ = ρ‹Ωmin +
2α (1− α) (ρl + ρg) k̃/ (σWe∗), where We∗ is a critical Weber number and is suggested as 1.63

[17]. The sub-volume kinetic energy k̃ is given by k̃ = 3
∣∣∣u′′
V

∣∣∣2 /2 = 3

Å
CSLlV

√
2›Sij›Sijã2

/2,

where
∣∣∣u′′
V

∣∣∣ represents the characteristic sub-volume velocity fluctuation induced by the drift
velocity and turbulent velocity fluctuations. The modelling constant, CSL = 0.66, is proposed
based an a priori analysis against resolved flow simulations [11]. It is evident that the source
term, SΩd

, for volume surface density is a non-linear term. Computing SΩd
based on the con-

stant volume scale independent of the grid scale can accelerate the numerical convergence.
The explicit volume length scale, lV , is supposed to be linked to a physical dimension of the
interfacial flow. Based on the investigation of the effect of the magnitude of lV [11], lV was
suggest to be no larger than the boundary layer thickness on the gas side of the interface for
which some empirical approximations are available [16]. Additionally, numerical convergence is
achieved when lV is several times larger than the LES grid size, ∆. In combination, these two
requirements ensure that smearing of the boundary layer due to volume averaging is not ex-
cessive and that the explicit volume diffusion remains sufficiently large to overwhelm numerical
diffusion.

Numerical implementation
The EVD model has been implemented in a new solver called evdFoam that is incorporated
in OpenFOAM. The volume averaged transport equations are solved on the LES mesh giv-
ing grid values of the properties, e.g. ρ∆, α̃∆, ‹Ω∆ and ‹ui∆. A second mesh of length scale
lV > ∆ is used for calculating the explicit volume diffusion coefficient in the interface region.
This requires integrating each of the quantities in Eq. (5) over all LES cells inside each explicit

volume. For example, the integrated volume averaged fields are given by α̃V =

∫
V
ρ∆α̃∆dV /ρ,‹uiV =

∫
V
ρ∆‹ui∆dV /ρ. Once DV

V is known, the values at the LES cells, D∆
V , that are needed to

solve the transport equations are obtained by linear interpolation. In the interior of each pure
fluid, it is convenient and logical to make the volume and grid scales equal where turbulent
viscosity is modelled to close the sub-grid stress. The integrated volume averaged surface
density is also obtained and this is taken as input to Eq. (8) to close the volume averaged sur-
face tension force, Fs,i

V . The magnitude of the force at each LES cell, Fs
∆, is obtained by linear

interpolation from Fs
V on the explicit volume mesh. To better capture the interface dynamics,

the direction of the force is given directly from the grid resolved interface normal direction which
reads n∆ = ∇α∆/

∣∣∣∇α∆
∣∣∣.

The standard numerical schemes in OpenFOAM are employed for evdFoam [10, 8, 11]. It
should be noted that the convection of volume fraction is solved by using a multidimensional
universal limiter for explicit solution (MULES) algorithm [18]. MULES can guarantee the bound-
edness of volume fraction fields and numerical stability for immiscible interfaces with large
liquid/gas density ratios. In the test cases investigated here, the maximum interface Courant
number is Coi = 0.25 but since the numerical method integrates the volume fraction over four
sub-steps such that it is effectively 0.0625. The maximum flow Courant number is Cof = 0.75.

Results and discussion
A laboratory turbulent non-reacting acetone spray jet produced by airblast atomisation is se-
lected as the test case for validating the full EVD approach (EVD coupling with Σ-Y ). High
quality measurements of volume fraction of liquid are obtained by using the two-angle backlit
imaging technique [8, 19]. The N-AS2 case is selected where the liquid acetone is injected
from a needle with diameter dj = 686 µm and the turbulent air stream is injected from a flush
concentric airblast tube with diameter D = 10 mm. The densities and kinematic viscosities
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of air and liquid acetone are well-known and their respective values are ρg = 1.178kg/m3,
ρl= 784.5kg/m3, νg = 1.567e-5m2/s and νl = 3.938e-7m2/s. The inflow mean velocity, turbu-
lent intensity, Reynolds number and the jet Weber number are shown in Table 1. The jet Weber
number based on the interfacial drift velocity is 35 and is calculated byWe = ρg (Ug − Ul)2 dj/σ.

Table 1. Parameter setup for the experimental airblast acetone spray, N-AS2

Case Ug(m/s) Ul(m/s) U ′
g/Ug U ′

l/Ul Reg Rel We

N-AS2 36 4.3 0.11 0.0525 21398 7491 35

A three-dimensional cylindrical domain is created for computations with an axial length of Lx =
50mm and a diameter of Din = 5mm. The inflow turbulent perturbations for both air and liquid
streams are generated by a digital filter [20]. The integral length scale of the airblast and the
liquid jet are set to be 1/8 of D and dj , respectively. Here, Din is half the experimental airblast
diameter, D, for the reduction of computational cost meanwhile it is sufficient to cover the
spray primary breakup region without undue effects from the numerical boundary conditions.
The characteristic boundary thickness on the gas side of the interface [16] is approximated as
ζ = 198 µm. The explicit volume length scale in the interface region is lV = 190 µm which is
just smaller than ζ. Three different grid resolutions containing 1.1M, 2.3M and 4.5M (M denotes
million) cells are used to discretise the EVD transport equations and the reader is referred to
[8, 11] for a detailed description of the mesh scheme. The corresponding ratios of grid to explicit
length ratios are ∆/lV =0.26, 0.2 and 0.16, respectively.
Figure 1 shows instantaneous volume fraction and surface density fields at the centre plane of
the computational domain. It can be visualised from the α∆ field (top) that the interface insta-
bility evolves and the amplitude of the wave amplitudes grow. The liquid core gradually departs
from the centre line and tends to be pinched off at about x = 0.0125m. At about x = 0.015 m
large irregular objects of liquid are formed which subsequently break up into various smaller
fragments. The volume integrated volume fraction field is presented (αV , middle). Compared
with α∆, only the interface regions are smoothed due to volume averaging over a volume scale
of the characteristic boundary layer thickness but the key features of different types of fragments
remain unchanged. Before the breakup of the liquid jet, the surface density (bottom) first rises
along the continuum interface due to interface wrinkling induced by large sub-volume velocity
fluctuations. Subsequently, it decreases to a moderate magnitude. This indicates the interface
wave length grows larger and the number of wrinkles in the finite volume tends to reduce. As
the jet starts to break, the surface density increases in the centre line. Further downstream,
intermittency can be observed due to discrete interfaces of different fragments which also dis-
perse radially. This leads to the decay of surface density along with volume fraction.
Figure 2 shows the mean and rms of volume fraction and surface density in the axial and radial
directions. The experimental measurements of volume fraction in the axial direction are avail-
able [19] that are taken to compare with the statistics of the simulations. The experimental error
bars relative to the mean values are used to validate the rms of volume fraction. The mean and
rms of volume fraction profiles in both axial and radial directions (at x/Din = 3 and 6) reach
convergence by refining grids. Especially, the 2.3M and 4.5M lines roughly overlap in spite of
slight deviation between 2.5 < x/Din < 3.5. Except for the discrepancy at r/Din = 3 for the rms
profiles, the surface density also exhibit acceptable grid convergence for 2.3M and 4.5M. Over-
all, the improvement of the model for Fs,i does not affect the good grid convergence as shown
in [11] which is superior to the methods proposed in [6, 9] as demonstrated in [8]. A slightly
earlier breakup location is predicted by the converged numerical results. Subsequent underes-
timation of the mean volume fraction in the axial direction can be observed albeit still within the
experimental error margin. The position of the highest rms is well predicted at about x/Din = 3
but the magnitude of the peak value is overpredicted. Upstream of this peak value, the pre-
dictions of rms are generally good, however, underpedictions are observed in the downstream
region. Compared with the experimental data, the key inaccuracy of the modelling results lies
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Figure 1. Comparisons of instantaneous volume fraction fields on the 4.5M LES grid (α∆) and on the volume
mesh (αV ), and the surface density fields on the LES grid (Σ

∆
). The x-axis is added to the bottom of the image of

α∆ with the unit of meter.

in the overpredictions of the decay of the jet. This is likely to be improved by reducing the mag-
nitude of volume averaged surface tension force [8] which can be simply realised by reducing
the surface density source term. Thus, a smaller value of CSΣ

in the source term, SΩd
, or a

larger critical Weber number, We∗, can be tuned for further validation.

Vo
lu

m
e

fra
ct

io
n

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4

Volume Fraction Mean

r/Din

x/Din=3

4.5M, ∆=0.16lV
2.3M, ∆=0.2lV

1.1M, ∆=0.26lV

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8

M
ea

n
 [

-]

x/Lx

Axial

Exp

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4

r/Din

x/Din=6

 0

 0.2

 0.4

 0.6

 0.8

 0  2  4  6  8

R
M

S
 [

-]

x/Din

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4

Volume Fraction RMS

r/Din

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4

Volume Fraction RMS

r/Din

S
ur

fa
ce

de
ns

ity

0e+00

1e+04

2e+04

3e+04

 0  0.2  0.4

Surface Density Mean

r/Din

x/Din=3

4.5M, ∆=0.16lV
2.3M, ∆=0.2lV

1.1M, ∆=0.26lV

0e+00

1e+04

2e+04

3e+04

 0  2  4  6  8

M
ea

n
 [

1
/m

]

x/Lx

Axial

0e+00

1e+04

2e+04

3e+04

 0  0.2  0.4

r/Din

x/Din=6

0e+00

1e+04

2e+04

 0  2  4  6  8

R
M

S
 [

1
/m

]

x/Din

0e+00

1e+04

2e+04

3e+04

 0  0.2  0.4

Surface Density RMS

r/Din

0e+00

1e+04

2e+04

3e+04

 0  0.2  0.4

Surface Density RMS

r/Din

Figure 2. Axial and radial profiles of mean and rms of volume fraction and surface density. Radial profiles are
shown at two axial stations. Experimental data [19] includes error bars.

Conclusions
A novel explicit volume diffusion (EVD) model is presented based on averaging the VoF equa-
tions over explicitly defined physical volumes [11]. The explicit volume scale is linked to the
boundary layer thickness on the gas side of the liquid-air interface but is independent of the
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grid scale. Volume averaging leads to unclosed sub-volume flux and stress which are mod-
elled by a physically derived explicit volume diffusion coefficient and a related explicit volume
viscosity augmented by an effective turbulent viscosity, respectively. Another unclosed volume
averaged surface tension force was derived to be correlated with a volume surface density that
was modelled based on fractal properties of wrinkled sub-volume interfaces [11]. Alternatively,
the volume surface density is proposed to be closed by solving its transport equation that can
be analogised to the one inherent to Σ-Y model in the present study. A laboratory airblast ace-
tone spray jet is selected as the test case. The numerical convergence of this full EVD model is
demonstrated by refining grids while keeping the physical volumes constant, so that the explicit
volume diffusion does not essentially vary and overwhelms the diminishing numerical diffusion
leading to numerical convergence of both mean and rms profiles of volume fraction and surface
density. The converged results are compared with the experimental data of liquid volume frac-
tion to access the model accuracy. A slightly earlier breakup location is predicted. Subsequent
underestimation of the mean volume fraction in the axial direction can be observed albeit still
within the experimental error margin. To improve the accuracy of computations, the sensitivity
of parameters involved in the surface density source term is suggested to be tested. The full
EVD model will be further validated against the high Weber number jet with We = 72 [19].
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