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Abstract 

Dynamic of droplet spreading on the free-slip surface was studied numerically by using the 

Front tracking method (FTM), with particularly interesting in the impacting under relatively 

small droplet inertias (�� ≤ 30). Our predictions of dimensionless droplet maximum spreading 

diameter ���� agree well with the widely-used Wildeman et al.’s [J. Fluid Mech. 805: 636-655 

(2016)] model at We>30. The “1/2 rule” (i.e., approximately one half of the initial kinetic energy 

finally transfer into surface energy) was found to break down at small Weber numbers (�� ≤

30) and droplet height is non-negligible when the energy conservation approach is employed 

to estimate ����. Droplet spreading can be divided into three distinct regimes according to the 

deformation styles, namely, the puddle-shaped regime (I), the transition regime (II) and the 

pizza-shaped regime (III). Surface energy dominates the energy budget in regime (I), while 

kinetic energy dominates the energy budget in regime (III). A practical model for estimating β

_max under small Weber numbers (We≤30) was proposed by accounting for the influence of 

impact parameters on the energy budget and the droplet height. Good agreement was found 

between our model and previous experiments. 
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1. Introduction 

Droplet impact a solid surface is regularly observed in many nature and industrial process 

[1].As for direct-ignition engines, liquid fuel is more likely to impact the combustion chamber 

due to the increasingly high fuel injection quantity [2]. Spray/wall interaction characteristics 

substantially influences mixture formation and subsequent combustion, therefore influences 

engine efficiency and emission. One of the most important underlying physics of spray/wall 

interaction is the dynamic of droplet impacting solid surface, which is usually adopted to 

estimate the wall film performance [3]. 

As a fundamental phenomenon in investigating spray/wall interaction, dynamic of droplet 

impacting the solid surface has been studied for decades. Previous investigations indicate that 

impacting dynamic is controlled by the impact Weber number �� = ������
� ��⁄  , which 

measures the relative importance of droplet inertia with respect to its surface tension; the 

Reynolds number �� = ������ ��⁄  , characterizing the relationship between droplet inertia 

force and its viscous force, where �� is the droplet initial diameter, �� the impact velocity, ��, 

��, ��, are the droplet density, viscosity and surface tension, respectively. For droplet spreading, 

one of the most important factors to estimate droplet dynamic is the dimensionless droplet 

maximum spreading diameter ���� , which is defined as the ratio of droplet maximum 

spreading diameter �� over its initial diameter ��, yields ���� = �� ��⁄ . Quantifying ���� is 

useful in many practical applications, such as estimating oil film characteristics in different 

engines [3]. 

A considerable number of models have been proposed for ���� quantifying, which have 

been reviewed in some excellent literatures [4-6]. Normally, the existing models for predicting 
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���� can be divided into three different categories according to the analysis methods, namely, 

scaling law  momentum conservation and energy conservation. For viscous fluid such as liquid 

hydrocarbon fuel, the contribution of viscous dissipation on energy conservation is non-

negligible therefore energy conservation approach tends to predicted more accurate ����. In 

this case, accurately predicting the viscous dissipation rate hence dissipated kinetic energy is 

essential for predicting droplet dynamic characteristics.  

To account for viscous dissipation during spreading, Wildeman et al. [7] numerically 

simulated droplet spreading under two limiting conditions, i.e., spreading on the total free-slip 

surface and no-slip surface. They proposed a “1/2 rule” that around one half of the kinetic 

energy finally transforms into surface energy for droplet spreading on an ideal free-slip surface 

under relatively large Weber numbers (�� > 30) and Reynolds numbers. The “1/2 rule” allows 

a complete theoretical solution for ����  prediction. The uniform droplet deformation under 

relatively large ��  may be the main reason for uniform kinetic energy dissipation and the 

asymptotically accurate “pizza-shaped” deformation for �� > 30  indicates droplet inertia 

dominates droplet internal flow, which almost regardless of ��. In spite of these advances in 

understanding droplet spreading dynamic under large Weber numbers ( �� > 30 ), it is 

surprising to find that only a few works have been conducted for small Weber numbers (�� ≤

30 ). Most of the previous studies were focused on modeling ����  under large ��  where 

droplet deformation appears a uniform “pizza-shaped” styles hence energy dissipation is ��-

independent. However, modeling ���� under relatively small �� has been barely investigated, 

probably due to the complex droplet deformation and energy dissipation characteristics. 

Based on the discussion state above on, the present study aims to numerically investigate 

the impacting dynamics and model ���� under relatively small Weber numbers (�� ≤ 30). 

Following our previous numerical works [8-10], a well-validated Front tracking method 

(referred to as FTM hereinafter) was employed to conduct the numerical simulations. To 

eliminate the influence of extra factors such as gas film effects and surface properties, we only 

considered an ideal condition that droplet spread with a gas film under free-slip surface. In the 

following text, we shall first introduce our numerical approach in Section II, followed by the 

discussion of spreading dynamic, particularly for small Weber numbers. Subsequently, the 

correlation between impact parameter and ����  will be discussed. Final, the conclusion 

should be presented in the last section. 

 

2. Numerical Methodology 

The present numerical study was conducted by adopting the FTM, which is originally 

developed by Unverdi et al. [11] and Tryggvason et al. [12] To simulate droplet impact on a 

free-slip surface for incompressible two-phase flow. A second-order centered difference 

scheme for the spatial variables and an explicit first order time integration method were 

employed to solve the governing equations of both liquid and gas phases, given by 

∇ ∙ � = 0                                                                                                                                                              (1) 

�(��)

��
+ ∇ ∙ (���) = −∇� + ∇ ∙ �[∇� + (∇�)�] − � � ����� − �����                                        (2) 

where � is the velocity vector, � is the density, � is the pressure, � is the viscosity, � is 

the surface tension coefficient, � is twice the mean curvature of local field, � is the unit vector 

outwardly normal to the local front, the term � is the constructed three-dimensional � function 

which represents the singular force, surface tension, over the phase interface, � is the point 

at which the equation is evaluated and �� is a point on the front.  
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The FTM solves a single set of conservation equations with appropriate interface terms 

in the whole field with an Eulerian coordinates grid and tracks liquid-gas interfaces using a 

Lagrangian approach. Figure 1 shows the computational domain of the current numerical 

simulation. In the cylindrical coordinate, z-axis is structured by the droplet initial velocity normal 

to the surface, while � -axis is perpendicular to the droplet initial velocity. Axisymmetric 

boundary condition is specified for the �-axis, while free-slip boundary conditions are specified 

to all of the other boundaries including the impacting solid surface. 

 

Figure 1. Axisymmetric computational domain with uniform structured grids. 

 

The computational domain of width 10��  and height 5��  is discretized by a uniform 

orthogonal mesh with 440 ×  880 cells, which means each unit length contains 88 grid points. 

Grid-dependence of present numerical approach have been fully checked in many previous 

works [9,13] in which FTM is not sensitive to the grid size because liquid-gas interface is 

tracked by the Lagrangian particles rather than computational cell. Additionally, the present 

cell size has been validated in one of the author’s previous publication [9], in which simulations 

with the same cell size have been proved to successfully and accurately solve the droplet 

problems. It should be noted that droplet impact problem always involving in the complex gas 

film problems. Therefore, to simplify the present simulation but avoid the complication of gas 

film, we only focus on a limiting condition that droplet spread with a gas film throughout the 

whole process.  

Governing equations are nondimensionalized by the droplet radius �� = �� 2⁄ , initial 

velocity �� and droplet density ��. Time is normalized by using � = � ∙ �� ��⁄ , where � is the 

real time. In addition, several previous studies [8,9] confirm that gas-liquid density ratio �� ��⁄  

and viscosity ratio �� ��⁄  are two or three orders of magnitude smaller than unity. Therefore 

their effects on droplet deformation and viscous dissipation can be neglected. Where �� and 

�� are gas density and viscosity, respectively.  

The FTM adopted in the present study has been sufficiently applied and validated in many 

previous studies [8-10] on droplet dynamic problems, which demonstrates that the present 

numerical method can be used to accurately predict the evolution of droplet deformation during 

impacting.  

Considering spreading on the free-slip surface with a gas film is equivalent to the impacts 

of Leidenfrost droplets, which hover on a steam gas film. We simulated Tran et al.’s [14] 

experiments on Leidenfrost droplet spreading at We = 32 and Re = 2150, as shown in Figure 

2. The simulation precisely predicted the droplet contours in the earlier stage by � = 1.2 ms, 

beyond which it seems our prediction shows lower droplet center height. This observation can 

be understood by recognizing that droplet spreading is accurately a rotational symmetry 

problem. Nevertheless, good agreement between our prediction and previous experimental 

results in terms of instantaneous droplet spreading diameter demonstrates the present 
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numerical approach can accurately predict the evolution of droplet spreading during impacting 

a free-slip surface with a gas film. 

 

Figure 2. Time sequences of Leidenfrost droplet spreading at We=32 and Re=2150. The solid line denotes 

predicted results while the shadowgraph indicates experimental results of Tran et al. [14] ; Horizontal line for 

impacting surface is represented by blue dash line. 

 

3. Results and Discussion 

3.1. Droplet spreading under relatively large Weber numbers (�� > ��) 

Energy conservation approach where the initial kinetic energy ��� is equal to the sum of 

dissipation energy ��, left-over kinetic energy �� and surface energy increment ∆�� at max 

deformation instant ��, yields  

��� = �� + �� + ∆��                                                                                                                                         (3) 

Since Wildeman et al.’s model is estimated according to the energy conservation 

approach associate with the “1/2 rule”, we subsequently show the energy budget in Figure 3, 

in which all the energies were normalized by the initial kinetic energy ��� and therefore the 

sum of �� , ��  and ∆��  is the unity. To further investigate the viscous dissipation 

characteristics, we counted the energy dissipation in both liquid phase (denoted by ���) and 

gas phase (denoted by ���), and therefore �� = ��� + ���. Figure 3(a) shows the evolution of 

four different energies during droplet spreading process, while Figure 3(b) shows the energy 

budget at �� for various droplet inertias and Reynolds numbers. In this case we defined � = 0 

as the time instant when the droplet just contracts the surface. The initially non-zero �� at � =

0, shown in Figure 3(a), can be attributed to the slightly deformation together with the droplet 

moving-induced gas motion and slightly influences the energy budget, therefore can be 

ignored in the present study. For energy budget shown in Figure 3(b), all the predictions 

generally follow the “1/2 rule”. Although viscous dissipation in the liquid phase contributes 

more for ��, viscous dissipation in the gas phase, i.e., ��� still cannot be ignored. 

 

3.2. Droplet spreading under relatively small Weber numbers (�� ≤ �� ) 

Figure 4 shows the prediction of ���� under small Weber numbers (�� ≤ 30). The solid 

line indicates Wildeman et al.’s [7] model. It is seen that ���� slightly deviates from Wildeman 

et al.’s model as droplet inertia decreases from �� = 30 to around �� = 12. This deflection 

can be attributed to the breakdown of the “1/2 rule” and the dominant factor of energy budget 

transfer from kinetic energy to the surface energy, to be elucidated in the following text. For 

Wildeman et al.’s model, there are two important hypotheses i.e., around one half of the initial 

kinetic energy transfers into surface energy and droplet shape at �� can be regarded as a 

“pizza-shaped” disk, whose thickness can be ignored when compared to the spreading 

diameter. 

To investigate the reason why droplet spreading under small Weber numbers deviates 

from the Wildeman et al.’s model, we show the energy budget for �� ≤ 30 in Figure 5. It is 

clearly seen that the “1/2 rule” breaks down and Δ�� increases with Weber number decreasing, 

indicating an ��-dependent energy budget. ∆�� generally larger than 1/2 indicates surface 

energy may be play a dominant role on droplet deformation during droplet spreading [8]. 
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Figure 3. Energy budget of droplet spread on the free-slip surface under We≥30. The dash line indicates the 

“1/2 rule”. 

 

Figure 4. ���� under small Weber numbers (We≤30). The Wildeman et al.’s [7] model is indicating in the 

figure for a comparison. 

 

Figure 5. Energy budget under small Weber numbers for different Reynolds numbers. 

 

3.3. Droplet deformation transitions 

Another significant factor should be taken into account is the non-negligible droplet height 

under small Weber numbers (�� ≤ 30). In this study we employed three different heights to 

characterize droplet shape, namely, droplet center height ℎ�, throat height ℎ� and rim height 

ℎ�. Figure 6(a) shows the evolution of three heights with impact Weber number increasing, 

the Reynolds number was fixed at �� = 1000. Droplet deformation shows a complex tendency 

and can be divided into three distinct regimes as impact Weber number increases, namely, 

puddle-shaped regime (I), transition regime (II) and pizza-shaped regime (III). 

For relatively smaller Weber number (�� < 12) in regime (I), it seems ℎ�  shows the 

highest value among three heights while ℎ� shows the lowest ones, indicates that relatively 



 
ICLASS 2021, 15th Triennial International Conference on Liquid Atomization and Spray Systems, Edinburgh, UK, 29 Aug. - 2 Sept. 2021 

small impact inertia results in that droplet appears like a puddle. As droplet inertia increases 

to regime (II), the initial kinetic energy gradually dominates the energy transfer therefore a rim 

can be squeezed out from the bottom part of the droplet and a narrow neck throat is formed 

to connect the rim and the central part of the droplet. As droplet impact inertia continually 

increases and finally beyond �� = 30, i.e., regime (III), we found ℎ� is approach to the ℎ� and 

its evolution becomes steady, indicates that droplet deformation become more pronounced 

and a thin lamella is bordered by a rim therefore droplet height can be ignored when estimating 

the surface energy. 

To further show the transition of droplet deformation, we quantitatively compared the 

relationship between droplet center height ℎ� and the rim height ℎ� denoted as  ∆ℎ = ℎ� − ℎ�, 

as shown in Figure 6(b). When the droplet spreading in regime (I), i.e., �� < 12, initial kinetic 

energy is insufficient strong to overcome the constraints of surface tension hence ∆ℎ generally 

larger than zero. As droplet inertia increases into regime (II), ∆ℎ decreases linearly by �� =

30, beyond which droplet spread in the regime (III) and ∆ℎ tends to become steady, indicates 

a uniform droplet deformation where droplet height is negligible and associating with the “1/2 

rule”, ���� can be accurately estimated according to energy conservation. However, as �� 

decreases to regime (II) (12 ≤ �� ≤ 30) although the “1/2 rule” breaks down, the pizza-

shaped droplet reluctantly maintains, therefore ���� only slightly deviates from Wildeman et 

al.’s model. As �� further decreases to �� < 12, droplet deformation transition into puddle-

shape regime (I) where droplet height is non-negligible when estimate ���� , therefore 

produces substantial deflection.  

 

Figure 1. Schematic of droplet deformation transition characterized by different heights. 

3.4. Modeling ���� under small Weber numbers 

It has been recognized in the previous section that the “1/2 rule” breaks down when the 

droplet impact inertia decreases to �� ≤ 30 , therefore ����  gradually deviates from the 

Wildeman et al.’s model. In this section, we first adopted a revised Weber number ���, which 

is defined as the droplet initial kinetic energy (��� = ����
���

� 12⁄ ) over its initial surface energy 

(��� = ����
�) hence ��� = �� 12⁄ . The ��� has been employed by Zhang and Zhang [8] to 

precisely measure the relative importance between droplet initial kinetic energy and surface 

energy.  

To estimate ���� using energy conservation approach, we first introduced the droplet 

deformation ratio �� as the rate of surface energy increment Δ�� to initial kinetic energy ���, 

given by �� = Δ�� ���⁄ . Figure 7 is used to show the relationship between �� and droplet 

revised Weber number ���, surface energy increment can be express as Δ�� = �� ∙ ���. 

Regardless of droplet spreading under relatively large �� cases for ��� > 1.0, �� seems 

independent of the �� and the simulation results agree well with the fitted formula, given by 

�� = 0.7���
��.�                                                                                                                                                (4) 
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Since droplet height is non-negligible when estimating surface energy under small Weber 

numbers (�� ≤ 30), droplet deformation and its transition can be characterized by three 

distinct heights, namely, the center height ℎ�, the throat height ℎ� and the rim height ℎ�. To 

simplify the quantification on surface energy, droplet at �� can be equivalent to a “column-

shaped” cylinder with the identical droplet maximum spreading diameter ��  and surface 

energy, as shown in Figure 8(a). Therefore, droplet height characterization can be simplified 

by using an equivalent surface energy height ℎ�, in this case surface energy can be expressed 

as 

��(��) = �� ���ℎ� +
��

� (1 − ����)

4
�                                                                                                        (5) 

where � is the contract angle and can be determined as 180° in our simulations. ℎ� can 

be further normalized by the �� as �� = ℎ� ��⁄ , which measures the relative importance of 

droplet height when compared to the droplet spreading diameter, and we found that ��  is 

relate to droplet impact inertia, as shown in Figure 8(b) that, 

�� = 0.1���
��.�                                                                                                                                                 (6) 

Consequently, ���� can be estimated by accounting for droplet surface energy increment 

at ��, yields 

���� = �
0.7���

�.� + 0.1

0.1���
��.� + (1 − ����) 4⁄

 (Free-slip, �� ≤ 30)                                                             (7) 

Figure 9 shows the comparison between the present model (i.e., equation 7, denotes by 

the red line) and the available numerical and experimental results. Serval observations can 

be made in this figure as follows. Firstly, our numerical predictions agree well with Tran et al.’s 

[14] experimental data which again confirms the accuracy of the present simulation. 

Secondary, the derived model for estimating ���� under small Weber numbers (�� ≤ 30) 

shows good agreement with both Tran et al.’s experimental results and our numerical 

predictions. Finally, the present model and Wildeman et al.’s model shows fine continuity at 

 �� = 30. 

 

4. Conclusions 

(1) As droplet impact inertia decreases to �� ≤ 30, where a ��-dependent energy budget 

can be found therefore the “1/2 rule” breaks down. Droplet progressively loss its thin pizza-

like shape and finally degenerates into puddle-like shape whose height is non-negligible 

when estimating the surface energy. 

(2) Droplet spreading can be divided into three distinct regimes. The first regime (I) is 

characterized by the puddle-shaped droplet at ��, in this case droplet surface energy 

dominates energy budget and restricts droplet deformation. The second regime (II) is 

regarded as the transition regime. In this case, initial kinetic energy is comparable to the 

surface energy. The third regime (III) is characterized by the uniform droplet deformation 

(thin pizza-shaped), where the “1/2 rule” is validated and droplet height is negligible 

when compared to the spreading diameter. 

(3) Based on the understanding of droplet spreading under small Weber numbers (�� ≤ 30), 

energy conservation approach was again employed to model the dimensionless droplet 

maximum spreading diameter ���� by accounting for the influence of impact parameters 

(such as �� and ��) on the energy budget and the droplet height at ��. A revised Weber 

number ���, which correctly reflects the orders of magnitude of various energies, was 

adopted to replace the �� in our modeling works. 
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Figure 7. Correlation between �� =

∆�� ⁄ ���  and revised Weber number 

with R^2=0.88. 

Figure 8. (a) Schematic of equivalent droplet deformation and (b) 

correlation between the normalized droplet equivalent height �� =

ℎ� ��⁄  and revised Weber number ��� with �� = 0.78. 
                     

 

Figure 9. Comparison between the derived spreading models (black solid line indicates Wildeman et al.’s [7] 

model, while red line denotes the present proposed model) and data points (Tran et al.’s experiment and 

numerical predictions. 
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