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Abstract
A method to predict sub-filter shear-induced velocities on a liquid-gas phase interface for use
in a dual scale LES model is presented. The method reconstructs the sub-filter velocity field in
the vicinity of the interface by introducing a vortex sheet at the interface. The vortex sheet is
transported by an unsplit geometric volume and surface area advection scheme with a Piece-
wise Linear Interface Construction (PLIC) representation of the material interface. At each step
and desired location the shear-induced velocities can be calculated by integrating the vortex
sheet and other relevant quantities over the liquid-gas surface with the sub-grid velocity recon-
struction limited to a small number of cells near the phase interface. The vortex sheet method
is tested and compared against prior literature.
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Introduction
Liquid atomization is an important process occurring in many engineering applications. Internal
combustion engines depend on the rapid atomization and evaporation of fuels to quickly and
efficiently mix with air before combustion can occur. Evaporation of a liquid fuel is a slow
process, but can be greatly enhanced by increasing the surface area of the liquid fuel. Since
the residence time in combustion engines is small, the liquid fuel must be rapidly atomized into
many small drops to provide a large surface area and increase the rate of evaporation. Many
modern engines rely on the fuel injector design to generate the required turbulence to rapidly
atomize the liquid fuel and obtain an optimal gaseous fuel/air mixture. Engine performance,
efficiency and pollutant production strongly depend on the quality of the fuel/air mixture prior
to combustion, and thus the details of the liquid-gas interface dynamics and atomization are of
great importance.
Predicting the turbulent interface dynamics remains a challenging task for numerical simula-
tions. Direct numerical simulations (DNS) have provided great insight for studying many as-
pects of turbulent immiscible interfaces. However, DNS must resolve all the relevant scales of
motion, requiring enormous computational resources to simulate even simple geometries [1].
This requirement severely limits the range of resolvable time and spatial scales available to
DNS and restricts DNS from being a viable tool for engineering design. A need therefore exists
for alternative modeling approaches to predicting turbulent interface dynamics.
A number of models have been introduced to predict breakup, including stochastic models [2, 3]
and interface transport equations for Reynolds-averaged Navier-Stokes (RANS) equations [4].
The stochastic model requires a priori knowledge of the break-up mechanism for accurate
predictions. Meanwhile the RANS approach models the mean interface density with a gradient
diffusion-like hypothesis, which ignores the spatial grouping effects of liquid elements [1]. Many
engineering applications of atomization, including aircraft engine combustors and diesel engine
injectors can exhibit swirling flows, recirculation regions and jets in cross-flow or co-flow that
are hard to predict using a RANS approach. Large-Eddy Simulations (LES) are often preferred
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in these applications, and therefore an atomization model consistent with the LES methodology
is a desirable engineering design tool.
Several LES models for turbulent immiscible interfaces have been proposed in the past [5, 6].
These LES models, however, require the existence of a cascade process to predict the unre-
solved scales, and furthermore require the dynamics of the unresolved scales to be inferred
from the dynamics of the resolved scales. The LES methodology has proven to be remark-
ably successful in single phase turbulent flows due to the existence of the energy cascade.
However, It remains unknown whether a similar cascade process can be taken advantage of
to model the dynamics of turbulent immiscible interfaces and atomization. What’s more, high
resolution simulations of turbulent liquid jets show that small droplets can be ripped out from
large ligaments in areas of high shear, circumventing any cascading process that a traditional
LES approach would use [7].
Surface tension forces tend to increase at increasingly small length scales due to the smaller
local radius of curvature, similar to the viscous forces responsible for the energy cascade.
Although viscosity acts to dissipate kinetic energy at small scales, surface tension can either
reduce surface corrugations or amplify them via an instability mechanism like Kelvin-Helmholtz,
Rayleigh-Taylor or Rayleigh-Plateau. These instabilities all rely on sub-filter interface geometry
to predict sub-filter corrugation growth, and thus require knowledge of the sub-filter interface
geometry. Details of the sub-filter interface geometry are unavailable in the traditional LES
approach, and therefore a dual-scale approach was proposed to provide a fully resolved real-
ization of the sub-filter interface geometry [8] and properly handle the sub-filter effects. In this
work a model is presented capable of predicting the effects of sub-filter shear-driven dynamics
on the resolved interface geometry.

Methods
The governing equations for the fully resolved motion of an unsteady, incompressible, immis-
cible, two-fluid system in the absence of surface tension and gravitational acceleration are the
Navier-Stokes equations,

∂ρu

∂t
+∇ · (ρu⊗ u) = −∇p+∇ ·

(
µ
(
∇u +∇Tu

))
, ∇ · u = 0 (1)

where u is the fluid velocity, ρ is the density, p is the pressure, and µ is the dynamic viscos-
ity. Surface tension and gravitational acceleration are neglected to focus on the shear driven
instabilities of the interface. In addition to the momentum equation, the conservation of mass
constrains the velocity field to be divergence-free. In the incompressible regime, fluid proper-
ties are taken to be uniform throughout each fluid. Therefore, ρ and µ are evaluated with a
volume-of-fluid scalar, ψ as,

ρ = ψρl + (1− ψ) ρg, µ = ψµl + (1− ψ)µg, (2)

where the l and g subscripts denote properties in liquid and gas respectively. The volume-of-
fluid scalar ψ is evaluated as ψ = 0 in the gas and ψ = 1 in the liquid. In addition ψ must also
be transported with the flow field as,

∂ψ

∂t
= −u · ∇ψ = −∇ · (uψ) + ψ∇ · u, (3)

where the last term on the right-hand-side is zero for incompressible flows due to Eq. (1).

Filtered Governing Equations
Following the methodology of LES modeling, a spatial filter is applied to Eq. (1),

∂ρ u

∂t
+∇ · (ρ u⊗ u) = −∇p+∇ ·

(
µ
(
∇u⊗∇Tu

))
+ τ 1 +∇ · (τ 2 + τ 3) , (4)

∇ · u = 0, (5)
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where the overbar (∗) implies spatial filtering, and

τ 1 =
∂ρ u

∂t
− ∂ρu

∂t
, (6)

τ 2 = ρ u⊗ u− ρu⊗ u, (7)

τ 3 = µ (∇u +∇Tu)− µ
(
∇u +∇Tu

)
, (8)

where τ 1, τ 2 and τ 3 represent the sub-filter effects due to acceleration, advection and viscosity
respectively [5]. Applying the spatial filter to Eq. (2) yields

ρ = ρlψ + ρg
(
1− ψ

)
, µ = µlψ + µg

(
1− ψ

)
. (9)

The spatially filtered volume-of-fluid can be evaluated by solving

∂ψ

∂t
+∇ ·

(
uψ
)

= τψ, (10)

where τψ is the sub-filter liquid flux and is obtained by applying the spatial filter to Eq. (3) and
making use of Eq. (1).

τψ = ∇ ·
(
uψ − uψ

)
(11)

The Dual-Scale Approach to Modeling Sub-Filter Shear-Induced Velocities
The classical LES modeling approach in single-phase flows assume the existence of a cascad-
ing process where there is a net transfer of energy to small scales. Applying a cascade process
to the atomization process for a liquid jet for example, would imply that the jet first breaks up into
large scale structures and then continues to break up into increasingly small-scale structures.
However as mentioned previously, evidence from high-resolution simulations of atomizing liquid
turbulent jets suggest that the atomization process does not follow a cascade process. These
simulations show that small-scale drops can be ejected during the ligament-formation process,
circumventing any cascade process for the phase interface geometry [7].

Figure 1. Refined Level Set Grid [18]

Instead of relying on a cascade process for the sub-filter motion, the dual-scale approach aims
to maintain a fully resolved realization of the interface geometry at all times [8] as shown in
Fig. (1). The dynamics of this interface are governed by Eq. (3), where u is the fully resolved
fluid velocity. The fully resolved velocity is decomposed into its filtered u and sub-filter usg
components,

u = u + usg, (12)

which can then be substituted in Eq. (3) as

∂ψ

∂t
= −∇ · ((u + usg)ψ) + ψ∇ · (u + usg) . (13)
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Finally, ψ in Eq. (9) can be evaluated by a direct explicit filter,

ψ =

∫
G(x)ψdx. (14)

where G(x) is a spatial filter function. With a model for usg and making use of Eq. (14), there
is no need to construct a model for τψ, and Eq. (9) can be evaluated directly. What’s more the
unclosed terms in the Navier-Stokes equations, τ 1, τ 2 and τ 3 , can be calculated directly by
first evaluating the fully resolved realization of ρ, µ, ψ and u using Eqs. (2), (12) and (13), and
then taking an explicit filter of the terms in Eqs. (6), (7) and (8). Finally, it is worth noting that
because ρ and µ are uniform throughout each fluid, the terms τ 1 and τ 3 reduce to zero when
the spatial filter does not contain an interface, and τ 2 reduces the standard sub-grid stress term
that can be modeled by any classical single-phase LES technique. Therefore the dual-scale
procedure needs only be applied in the vicinity of the interface.
The dual-scale method does present an exact closure of the sub-grid terms, however the mod-
eling task is now shifted to maintaining a fully resolved realization of the interface geometry by
solving Eq. (13) and modeling the sub-filter velocity usg. A model for usg is proposed consisting
of four parts,

usg = u′ + δu + uσ + ug (15)

where u′, δu, uσ and ug are the sub-filter velocities due to turbulent fluctuations, shear-induced
instabilities, surface tension and acceleration instabilities respectively. Models for u′ and uσ are
presented in [9] and [10] respectively, a model for δu is presented here and ug is the subject of
future work.

Sub-Filter Velocity due to Shear-Induced Instabilities
To model the shear-induced sub-filter velocities, we consider the motion of the phase inter-
face between two fluids that are two-dimensional, inviscid and incompressible. This motion is
governed by the Euler equations presented here in dimensionless form as

∂ui
∂t

+ (ui · ∇)ui = − 1

ρi
∇p, ∇ · ui = 0, (16)

where the velocity u and density ρ are defined on either side i of the interface Γ, and p is the
pressure. Additionally, the boundary conditions at the interface are given by

[(ug − ul) · n]
∣∣
Γ

= 0, [(ug − ul) · t]
∣∣
Γ

= η (17)

[pg − pl]
∣∣
Γ

=
1

We
κ (18)

and the velocities are constrained to U±∞ far from the interface. In these boundary conditions,
n and t are unit-vectors normal and tangent to the interface, η is the vortex-sheet strength,
We = ρrefLrefu

2
ref/Σ is the Weber number, Σ is the surface tension coefficient, ρref, uref and Lref

are the reference density, velocity and length respectively, and κ is the local curvature of Γ. The
evolution of the vortex sheet strength can be derived by introducing velocity potentials into the
Euler equations and its accompanying boundary conditions to produce a vortex sheet transport
equation [11, 12, 13].

∂η

∂t
+ u · ∇η = (n · ∇u · n) η +

1

We
∇κ · t (19)
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The terms on the left-hand side of Eq. (19) represent the temporal changes and convective
transport of the vortex sheet strength. The terms on the right-hand side describe the stretching
of the vortex sheet and surface tension effects. Note that η is a surface quantity so Eq. (19)
only needs to be solved at the location of the interface, so in addition to tracking the vortex
sheet the interfacial area A in each cell is transported via the following equation [14].

∂A

∂t
+ u · ∇A = − (n · ∇u · n)A (20)

Additionally the circulation C around the interface is defined as the line integral around the
interface, taking the form of

C =

∫
Γ
u · nds =

∫
Γ

(ug − ul) · nds =

∫
Γ
η(s)ds (21)

Finally the velocities due to the presence of the vortex sheet can be evaluated via a line integral
of the form

u (x, t) =

∫
Γ
η(s, t)ez ×

x− x(s, t)

|x− x(s, t)|2
ds, (22)

where the interface Γ is parameterized by the arc length of the interface s. Milne-Thomson
showed that Eq. (22) can be transformed into

u(x, y) =
1

2

∫ L

0
η(s)

sinh (2π(y − y(s)))

cosh (2π(y − y(s)))− cos (2π(x− x(s))) + µ2
ds, (23)

v(x, y) =
1

2

∫ L

0
η(s)

sin (2π(x− x(s)))

cosh (2π(y − y(s)))− cos (2π(x− x(s))) + µ2
ds, (24)

for vortex sheets of length L that are periodic in the x-direction [15]. Note that the to avoid
singularities in the integrals in Eqs. (22), (23) and (24) a desingularization parameter µ2 is
added to the denominator [16].

Numerical Approach
The Navier-Stokes equations are solved using NGA, a structured, staggered, finite difference
flow solver with a fractional step method [17]. The task of maintaining a fully resolved realization
of the phase interface geometry is achieved by solving Eq. (13) on a high resolution auxiliary
Cartesian grid independent of the underlying flow solver grid. The Refined Level Set Grid
(RLSG) method [18] is used to manage the auxiliary grid and activate it in regions where the
spatial filter contains an interface as illustrated in Fig. (1).
Eqs. (13) and (20) are advanced using an unsplit geometric transport scheme. The volume-
of-fluid scalar transport is executed via the computational framework of Owkes and Desjardins
directly [19], and the split transport interfacial area transport scheme of James and Lowengrub
[14] is extended to the unsplit framework of Owkes and Desjardins. This method ensures
that volume-of-fluid scalars remain bounded and that discrete volume is conserved for each
fluid. The geometric interface within each computational cell of the RLSG is built using PLIC
reconstruction with analytical formulas [20] and ELVIRA estimated normals [21]. Additionally
the circulation C is regarded as a surfactant and transported geometrically with the interfacial
area via the scheme of James and Lowengrub [14]. The vortex sheet strength is subsequently
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updated in each RLSG cell containing an interface upon completion of the advection step with
the following equation.

ηi,j =
Ci,j
Ai,j

(25)

The sub-filter velocities in Eq. (22) are numerically evaluated by first triangulating the PLIC
reconstruction in each cell and then numerically integrating Eq. (22) (or Eqs. (23) and (24) in
the periodic case) with a 9-point Gaussian Quadrature formula for triangles [22]. To evaluate the
vortex sheet strength η at the Gaussian Quadrature points in the triangulated PLIC surfaces, it
is linearly interpolated using gradients computed by neighboring cells [14].

Results
The sub-filter velocity generation technique is tested with a desingularized version of the Moore
singularity problem following Krasny [16]. The initial condition for the interface is given by

y (x, t = 0) = A0 sin

(
2π

B

[
x−A0 sin

2π

B
x

])
, (26)

where A0 and B are the amplitude and wavelength of the disturbance respectively. The initial
vortex sheet strength is then given by

η(x, t = 0) =
η?√

1 + 4πA0
B cos 2π

B x+ 2
[

2πA0
B cos 2π

B x
]2 , (27)

where η? is the unnormalized vortex sheet strength. For this test case the initial amplitude and
wavelength are A0 = 0.01 and B = 1, and the unnormalized vortex sheet strength is η? = −1.
The initial velocity field can then be evaluated with Eqs. (23) and (24) with the aforementioned
Gaussian Quadrature formula for triangles. The simulation will take place in a 1 × 1 domain
with an equidistant 256 × 256 cartesian grid and periodic boundary conditions on the left and
right walls. As shown in Fig. (2) the results from this study (labeled "VoF-PLIC") are in good
qualitative agreement with that of the vortex sheet roll-up study conducted by Krasny [16]. The
overall shape between the results is identical for early times with some slight deviation occuring
late in the simulation, however the number of turns generated by the vortex sheet is the same
between each set of results.
Quantitatively this method can be compared to Krasny’s study with the arc length of the interface
after 1.0 second of simulated time at several desingularization parameters µ. The arc length of
the VoF-PLIC vortex sheet method is computed by simply summing up the interfacial area A in
each cell. The results of this comparison are presented in Table (1) and they show excellent
agreement with this study and that of Krasny [16] with the notable exception of µ = 0.10. This is
believed to be caused by the desingularization parameter µ, which acts to numerically diffuse
the vortex sheet. In cases where µ is sufficiently large the numerical viscosity will dampen out
high wavenumber disturbances. Since the method relies on a discontinuous PLIC geometric
representation of the interface, high wavenumber disturbances can exist at cell faces and be
amplified. This results in roll-up occurring not only at the low wavenumber of the domain but at
high wavenumbers leading to excessive stretching of the interface and a larger arc length.
Many atomization models are based on the Kelvin-Helmholtz Instability, it is therefore neces-
sary that the VoF-PLIC model is capable of reproducing growth rates in the linear regime of the
KHI. For a pair of fluids with equal density in the linear regime, the growth rate w is given by
Eq. (28) [13]
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Figure 2. Moore Singularity Interface Comparison with Krasny [16], µ = 0.25, t = 1, 2, 3, 4

Table 1. Arc Length Comparison
µ Krasny VoF-PLIC (%) Difference

0.50 1.034 1.035 0.1
0.45 1.044 1.044 0.0
0.40 1.059 1.058 0.1
0.35 1.082 1.08 0.2
0.30 1.123 1.119 0.4
0.25 1.207 1.197 0.8
0.20 1.358 1.343 1.1
0.15 1.601 1.582 1.2
0.10 1.996 3.888 95

w(We) =
k

2

√
1− 2k

We
, (28)

where k is the wavenumber of the disturbance. The initial conditions for the interface will be
identical to those of the previous numerical experiment with the exception that the initial am-
plitude A0 is reduced to A0 = 1 × 10−5, and the experiment is only run until t = 0.5. This
ensures that the growth of the instability remains within the linear regime. The growth rate of
the disturbance will then be measured by taking a least squares regression of the amplitude
A(t) to Eq. (29).

A(t) = A0e
wt (29)
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The results of this experiment are given in Table (2), and they show that the VoF-PLIC method
is capable of matching linear theory as µ is reduced. These results also show how µ can
replicate the effect of having a finite shear layer thickness by suppressing the growth rate at
larger values.

Table 2. Growth Rates Compared with Linear Theory (w = 3.142)

µ VoF-PLIC (%) Difference
0.25 2.16 31.3

0.225 2.315 26.3
0.20 2.406 23.4

0.175 2.516 19.9
0.15 2.623 16.5

0.125 2.758 12.2
0.10 3.015 4.0

Conclusions
In this paper a method to reconstruct sub-filter shear driven velocities for use in a Dual-Scale
LES model has been presented. The method generates shear driven velocities by applying a
vortex sheet at the interface location of a phase interface between a liquid and gas. The ve-
locities induced by that vortex sheet can then be found by numerically integrating Eq. (22) with
a Gaussian Quadrature formula. These velocities are then used to transport the interface and
surface quantities with an unsplit geometric transport scheme. Finally, the updated interface
geometry can be explicitly filtered and sent back to the underlying Navier-Stokes flow solver.
The method has been tested against well-known results and shows excellent agreement in cap-
turing the motion of the interface under reasonable conditions. Future work includes extending
the method into 3D, including the effect of surface tension and further testing the method in a
dual scale environment.
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