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Abstract
Modeling of spray systems using the point-particle approach requires estimation of the undis-
turbed fluid flow quantities such as velocity, pressure, species mass fraction, and temperature at
the droplet location, to accurately capture the droplet dynamics. However, in a typical two-way
coupled computation, the droplets affect the fluid flow through mass, momentum, and energy
exchange, and disturb the flow. This self-disturbance effect is significant for droplet sizes that
are on the same order or larger than the grid resolution, which in practice is common in spray
studies, even for a point-particle based approach. A general formulation that accounts for the
self-disturbance created by the dispersed droplets in obtaining the undisturbed fluid flow for
accurate computation of the force closure, thermal heating, and evaporation is derived. This
self disturbance-corrected approach is evaluated for two simple test cases of (i) single droplet
held fixed in a uniform flow of hot fluid, and (ii) gravitational settling of a droplet in a quiescent,
hot fluid to show very good predictive capability. The approach is straightforward and can be
applied to any numerical formulation for spray systems.
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Introduction
Modeling of spray systems typically employs the the point-particle (PP) approach [1], in which
the spray droplets are assumed spherical, subgrid, with low volume loading, and modeled as
point sources. These assumptions also facilitate use of standard closure models for drag force,
heat and mass transfer coefficients, developed for uniform flow over an isolated droplet (or
particle), in computing the droplet dynamics. This point-particle approach is typically extended
to account for higher volume loadings, by incorporating the reaction force, heat, mass trans-
fer from the droplet phase to the fluid phase (‘two-way coupling’) [2], accounting for the fluid
volume displacement by droplet motion by incorporating local volume fraction variations in the
governing equations (‘volume-filtered’ or ‘volumetric’ coupling) [3], and incorporating models for
inter-droplet interactions, droplet breakup [4], and coalescence. Applying this model to realistic
spray systems, often results in situations where the main assumption of droplet being subgrid
is not satisfied, especially near the injector. Then, the self-disturbance created by the droplet,
through two-way and volumetric coupling, can be significant, and alter the flow variables at the
droplet location (velocity, mass-fractions, and temperature). However, their undisturbed values
are needed for drag, heat and mass transfer models, and are no longer available.
Obtaining the undisturbed flowfield, by correcting for the self-disturbance created by the droplet,
has received significant attention recently [5, 6, 7, 8]. Majority of these studies are for isother-
mal, solid particles, and invoke low Reynolds number, Stokes flow solutions. Liu et al. [9]
extended this approach for a heated solid particle using similar assumptions. In this work, a
general formulation is first derived involving partial differential equations for the self-disturbance
field created by a droplet in the momentum and energy equations. Here, droplet evaporation
and chemical reactions are neglected; however, extending the idea to include these effects is
straightforward. These equations can be solved using the same numerical approach employed
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in the fluid flow solver, and thus can be used in any numerical solver. The model is tested for
two simple cases involcing a single isolated droplet (i0 held fixed in a hot, uniform flow, and (ii)
falling under gravity in a pool of hot fluid. For low Peclet numbers, it is first shown that the uncor-
rected velocity and temperature of the droplet predicted by the standard point-particle approach
are highly inaccurate, especially for droplet sizes on the order of grid resolution. The fluid flow
corrected for self-disturbance is then shown to predict the droplet dynamics accurately. The
approach is valid for a range of droplet Reynolds and Peclet numbers, different models for drag
force and heat transfer, and can be extended to droplet evaporation and mass transfer. It is also
applicable directly to any type of grid (structured or unstructured, isotropic or anistropic grids)
and any complex boundary conditions.

Mathematical formulation
The mathematical formulation is based on mass, momentum, and energy conservation equa-
tions in the limit of zero-Mach number. Any acoustic interactions and compressibility effects
are neglected and the thermodynamic pressure is assumed constant. In addition, for simplicity
of the analysis, temperature-induced density variations within the fluid due inter-phase heat
transfer are assumed small; that is, the energy equation is decoupled. Such an assumption
is reasonable in absence of chemical reactions, and when buoyancy induced thermal effects
are not important. However, note that, the formulation for disturbance field due to presence
of droplets as presented here can be easily extended to flows with variable density, multiple
species, evaporation, and chemical reactions. The mass, momentum, and energy equations
for two-way coupled single droplet system are,
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= 0, (1)
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)
and ρg is the density of the fluid (assumed constant), ui is the

velocity, µ is the dynamic viscosity, p is the pressure, h is the total enthalpy, Ṡ are the source
terms due to inter-phase coupling. These source terms may be based on advanced models for
droplet drag and droplet heating.
The above equations result in velocity, and enthalpy fields that are disturbed by the interaction
terms from the droplet phase. The undisturbed flow field (denoted by superscript ()un) can
be obtained from the above equations without the inter-phase coupling terms. The difference
between the undisturbed and disturbed flow for a single droplet, gives the disturbance flowfield
(denoted by superscript ()d),

uuni = ui + udi ; pun = p+ pd; hun = h+ hd. (4)

Although, the disturbance equations can be derived for a general, multi-species, variable den-
sity flow, for simplicity, the equations below are written for the case where density variations
within the fluid due inter-phase heat transfer are assumed small; that is, disturbance in density
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is negligible. Then, the disturbance equations can be derived and shown to be,
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= 0, (5)
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In the above equations, the advective terms give rise to additional terms ρgu
d
j∂u

un
i /∂xj and

ρgu
d
j∂h

un/∂xj , which require additional closure between the undisturbed and disturbance fields.
However, these terms can be safely neglected by hypothesizing that the spatial variations in the
undisturbed flow are negligible compared to those in the disturbed flow, ∂uuni /∂xj � ∂udi /∂xj .
Note that the nonlinear, advective terms contain the disturbance velocity (udi ) and enthalpy (hd)
and the two-way, coupled velocity (uj). The latter is readily available in a two-way coupled sim-
ulation from the solution of equations (1–3). The above disturbance equations can be directly
solved in addition to the two-way coupled equations (1–3).
However, this requires an additional step involving an expensive pressure Poisson solution for
the disturbance pressure, pd. To further simplify this solution process, an approximate solu-
tion of the disturbance field is proposed that is derived based on low droplet Reynolds number
assumption. It is worth noting that, the fluid response to the droplet force, is approximately
analogous to the flow that would be generated by the droplet. This is in fact the main assump-
tion employed in the two-way coupled point-particle approach wherein it is assumed that the
droplet point-force can approximately produce the same flow as a finite size droplet would do
in reality. In the limit of steady state and Rep<0.1, a Stokes solution is obtained for the flow cre-
ated around the actual droplet. In this Stokes regime, the drag on the droplet that experiences
slip velocity of urelp , consists of two terms (i) pressure and (ii) viscous forces as,

F Stokes
drag = πµdpu

rel
p︸ ︷︷ ︸

Pressure force

+ 2πµdpu
rel
p︸ ︷︷ ︸

Viscous force

. (8)

For low particle Reynolds numbers, the expression for these two forces are identical, with vis-
cous force being twice greater than the pressure force. Motivated by this, one can model the
contribution of the pressure drag through an effective viscosity and rewrite the Stokes drag
force as,

F Stokes
i,drag = 2πµeffdpu

rel
p ; µeff = Kµµ; Kµ = 1.5. (9)

Rewriting the Stokes drag in this form facilitates the approximation that the effect of the pres-
sure gradient term in Eq.6 can be modeled through an equivalent viscous term with an effective
viscosity with Kµ=1.5 to match the net fluid force in the Stokes limit. It should be noted that
the continuity constraint is already embedded in the Stokes solution from which the Stokes
drag is obtained. Therefore, it is conjectured that the introduced correction factor will implicitly
provide a velocity field that approximately satisfies the continuity equation. Since, the pressure
correction term is no longer needed, the continuity equation in Eq.5 is unnecessary, and is
only satisfied approximately. The disturbance field due to the droplet forces, can be computed
by solving only the momentum equation in each direction with viscous stresses and a modi-
fied viscosity through the introduced correction factor of Kµ=1.5. This results in a simplified,
unsteady advection-diffusion-reaction equation for the disturbance velocity components and
enthalpy. These equations can be solved very efficiently to give spatio-temporally accurate so-
lutions. In addition, for higher Reynolds numbers, the correction factor Kµ can also be adjusted
to account for different relative contributions of the pressure and viscous forces.
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The approximate disturbance equations then become,
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The above unsteady advection-diffusion-reaction equations are solved in addition to equations
(1–3), and the undisturbed velocity and enthalpy fields are evaluated using equations (9). This
undisturbed fluid flow variables are then interpolated to the droplet location and used in the
drag and heat transfer laws needed to compute the droplet velocity and temperature values.
The above formulation for disturbance field is independent of the model used for the drag force
or heat transfer between the fluid and the droplet. In the present work, the following droplet
equations are solved;

dxp
dt

= up;
dui,p
dt

=

(
1− ρg

ρp

)
gi +

uuni,@p − ui,p
τp

;
dTp
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=
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, (12)

where ui,p is the droplet velocity, Tp is the droplet temperature, subscript @p corresponds to the
fluid property interpolated to the droplet location, τp and τh are droplet relaxation and heating
time scales. For the present study, the Biot number is assumed small, so temperature variation
within the droplet is negligible. The droplet relaxation and heating time-scales, are based on
simple Stokes flow solution, although any other advanced model can be used:
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ρpd

2
p

18µ
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ρp
ρg
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d2p
12αh

, (13)

where ρp is the droplet density, dp is the droplet diameter, Cp,` is the droplet specific heat, and
Cp,g is the fluid specific heat. The inter-phase source terms are then obtained as,

Ṡi,@p = −mp

uuni,@p − ui,p
τp

; Ṡh,@p = −mpCp,`
T un@p − Tp

τh
. (14)

A consistent Gaussian interpolation kernel is used to interpolate the flow variables from the
control volume centers to the droplet locations, and the above source terms at the droplet
location to the surrounding control volumes [3].

Results and discussion
To evaluate the effectiveness of the disturbance correction model, two cases involving a single
droplet in a hot fluid are considered: (i) a single droplet is held fixed and at constant tempera-
ture in a hot fluid with uniform inflow. The flow variables (velocity and temperature) interpolated
to the droplet location are computed for two-way coupled simulation with and without the cor-
rection and compared against the undisturbed (one-way) flow, and (ii) a single droplet falling
under gravity in a hot, quiescent fluid is computed and the temporal evolution of the droplet
speed, temperature are compared for the two-way coupled simulation with and without cor-
rection against the one-way coupled simulation. Two different droplet Reynolds numbers are
considered for each case.

Fixed Droplet
In this case, a single droplet is held fixed and at constant temperature in a uniform inflow and
temperature higher than the droplet. A domain of of size [6.4, 51.2, 6.4] with uniform cubic grids
of 64× 512× 64 is used in the x, y, z coordinates, respectively. A uniform flow with inlet velocity
Uinlet is imposed in the vertical (y) direction with a convective outflow boundary condition at
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the other end. Periodic conditions are imposed in the x and z directions. A spherical droplet of
size, dp = 0.1 m, is placed at a vertical distance of 7 units from the inlet, and at the center of
the domain in x and z directions. The droplet size is selected to be same as the grid resolution.
The droplet is held fixed and at a constant temperature of T ∗

p = (T − Tref )/Tref = 0, where the
reference temperature is Tref = 300 K. The droplet density is set to ρp = 180 kg/m3 and the
ratio of droplet to fluid specific heat is set to Cp,`/Cp,g = 1.0. The fluid density, ρg = 1.0 kg/m3,
dynamic viscosity, µ = 0.1 kg/m.s, and thermal diffusivity is set to αh = 0.1 m2/s. The initial
and inlet fluid temperature are set at T ∗

inlet = (T − Tref/Tref ) = 1. Only the drag force is
considered and gravity is neglected in this case. By varying the inlet velocity Uinlet = 1, 10 m/s,
two droplet Reynolds numbers of Rep = ρgUinletdp/µ = 1, 10 are studied. The corresponding
Peclet numbers are Pep = Uinletdp/αh = Rep.P r = 1, 10.
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Figure 1. Non-dimensionalized, disturbed fluid temperature contours and vector plot (the inlet velocity is removed
from the vertical component): (a) Rep = 1, (b) Rep = 10. Only a small region surrounding the droplet is shown.

Figures 1a,b show the non-dimensionalized, disturbed fluid temperature contours together with
the vector plot for two different Reynolds numbers, respectively. To better visualize the flow field,
the inlet velocity is removed from the vertical velocity component while plotting the vector plot.
Only a small region surrounding the droplet is shown. It is clearly seen that, with Rep = 10, the
wake of the droplet is longer, but narrower compared to that at Rep = 1. With one-way coupling,
the fluid temperature at the droplet location should be the undisturbed temperature and equal
to the inlet temperature. Accordingly, for one-way coupled simulation in this case, the heat
transfer from the fluid to the droplet should remain constant. However, with two-way coupling,
the fluid temperature surrounding the droplet is affected and lower than the inlet temperature
owing to heat transfer from the fluid to the droplet. Thus, the rate of heat transfer from the
fluid to the droplet is affected, if this uncorrected fluid temperature is used. It is seen that this
effect is much stronger for the lower Rep and Pep case. This is because, for the increased
Peclet number (obtained by increasing the inlet fluid velocity), the disturbance created by the
droplet is quickly advected away, and its local effect is not as strong. These effects are more
pronounced when the droplet size is larger than the grid resolution and diminish in their effect
as the droplet size becomes much smaller than the grid resolution (not shown).
Figures 2a,b show the temporal history of the fluid velocity and temperature fields interpolated
to the droplet location for the two Reynolds numbers. Plots for before and after the correc-
tion are presented. After correction, the non-dimensional velocity and temperature fields at the
droplet location are observed to be constant at equal to the undisturbed values, as in a one-way
simulation. This shows that the correction model is very effective for both Reynolds numbers.
Also shown is the history of the velocity and temperature fields before correction. Their devi-
ation from the corrected values is the error in a two-way coupled simulation. It is seen that,
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Figure 2. The disturbed flow fields interpolated to the droplet location for two different droplet Reynolds numbers:
(a) non-dimensional vertical velocity, (b) non-dimensional temperature (T ∗

@p = (T@p − Tref )/Tref ). The corrected
and uncorrected fields are shown.

this error is nearly 45% for Rep = 1 and decreases to about 15-18% for Rep = 10. These are
still substantial deviations from the true solution and indicates the necessity of the correction
model, especially in the near injector region, where droplets of size on the order of the grid
resolution are expected.

Gravitational Settling
A single droplet settling under gravity in a quiescent, hot fluid is investigated. A triply periodic
box of dimensions 6.4× 51.2× 6.4 with uniform 64× 512× 64 cubic grids are used. A droplet of
density ρp = 180 kg/m3 and size dp = 0.1 m is initially placed at [0, 44, 0] in a fluid of dynamic
viscosity µ = 0.1 kg/m.s, thermal diffusivity αh = 0.1 m2/s, and density of ρg = 1 kg/m3. The
ratio of droplet to fluid specific heats is set at Cp,`/Cp,g = 1.0. Gravity is assumed in the vertical
direction, and its value is varied to obtain different droplet Reynolds and Peclet numbers. The
droplet settling speed (Us), the particle relaxation time (τp), the droplet Reynolds number (Rep)
and Peclet number (Pep) are given as,

Us =

(
1− ρg

ρp

)
τp|g|; Rep =

ρgUsdp
µ

; Pep =
Usdp
αh

= RepPr, (15)

where g is the gravitational acceleration. Two cases with g = −1.055 m/s2 and −10.055 m/s2

in the vertical y direction are considered resulting in particle Reynolds numbers of 1, 10. Ini-
tially, the flow is assumed quiescent and at uniform non-dimensional temperature of 1, while
that of the droplet is assumed as 0. The non-dimensional temperature is defined as T ∗ =
(T − Tref )/Tref , where Tref = 300 K. A small Biot number is assumed, and thus the droplet
temperature is assumed uniform.
Figures 3a-d show the temporal history of droplet Reynolds number with corrected and un-
corrected fluid flow (a,c) and non-dimensional fluid temperature at the droplet location with
corrected and uncorrected fluid flow (b,d) for two different cases with terminal droplet Reynolds
numbers of 1 and 10. It is observed that, when the fluid flow is uncorrected for velocity and
temperature disturbance created by the droplet, the settling speeds (and hence the droplet
Reynolds numbers) reached by the droplet are much larger than the true settling speeds based
on a one-way coupled simulation. This is because, as the droplet modifies the local fluid veloc-
ity and temperature, the relative velocity of the droplet is lower than what it would be without any
disturbance. Hence, the drag force experienced by the droplet (based on the relative velocity)
is lower. As the droplet reaches terminal speed, the drag, buoyancy and weight of the droplet
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must be in balance. With lower drag force, the terminal speed attained by the droplet is larger.
From figures 3a,c it can be observed that this overprediction is on the order of 35% and 10%
for Rep = 1 and 10, respectively. The error decreases with increased terminal speed because,
the droplet moves away form the self-induced disturbance at a faster rate. In both cases, the
corrected velocity at the droplet location is obtained to be nearly zero, as it should be in a qui-
escent, undisturbed flow, and the terminal speeds predicted by the corrected model are nearly
identical to the one-way coupled approach. This shows the effectiveness of the correction
model. Similar results are obtained for the droplet temperature. As seen in figures 3b,d, as the
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Figure 3. Time history of droplet Reynolds number (Rep = ρ|u@p − up|dp/µ) and non-dimensional fluid
temperature (T ∗

@p = (T@p − Tref )/Tref ) based on the disturbed and corrected fluid velocity and temperature at the
droplet location compared with the true, undisturbed solution from one-way coupling: (a,b) Pep = 1, (c,d) Pep = 10.

droplet starts from rest, the uncorrected fluid temperature at the droplet location is significantly
lower than the one-way coupled value. In this early time, the droplet has not moved significant
amount, and yet removes considerable amount of heat from the fluid, which locally results in
lower fluid temperature. As the droplet accelerates, and starts to move faster, it is seen that
the error in the uncorrected fluid temperature field decreases. In addition, as the droplet starts
to heat up, the difference in the fluid temperature and droplet temperature also decrease, and
thus lesser amount of heat is removed from the fluid, reducing the amount of disturbance in
fluid temperature created by the droplet. In case of droplet falling with higher terminal speed
(Rep = 10), the local disturbance created by the droplet is again smaller. With correction, the
fluid temperature remains very close to the undisturbed (one-way coupled) value. Since the
fluid temperature remains unchanged, the rate of heat transfer to the droplet is higher, com-
pared to the uncorrected case, and the droplet heats up more rapidly (not shown).
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Conclusions
In a typical point-particle model for droplet sprays, if the size of the droplets is much smaller than
the grid resolution, the perturbation created by the droplet through interphase reaction terms
in momentum, and energy transport equations is not significant. However, this disturbance
becomes significant, when the droplet size becomes comparable to or larger than the grid
resolution. In addition, having dense cluster of droplets can also induce significant disturbance.
Such a situation is common in several spray systems especially near an injector. Under these
conditions, using the disturbed flow field (velocity and temperature) at the droplet location to
compute the droplet dynamics can lead to significant errors. An approach that corrects the
disturbed flow to obtain the undisturbed flow field was developed and verified.
Governing equations for the disturbance velocity and temperature field were derived. For low
Reynolds numbers, unsteady advective-diffusive-reaction equations were obtained for distur-
bance velocity and temperature fields. These equations are solved in addition to the two-way
coupled fluid and particle phase equations to obtain the undisturbed flow field required in solv-
ing the droplet equations. The formulation was applied to a simple test cases of (i) a fixed
droplet in a uniform heated flow and (ii) a single droplet falling under gravity in a heated, qui-
escent pool of fluid. For low Reynolds (Peclet) numbers, and droplet size on the order of the
grid resolution, the model predicts the undisturbed flowfield accurately. Neglecting to correct
for this self-induced disturbance was shown to result in large errors (up to 45% fluid velocity at
the droplet location) at low Reynolds numbers. The error becomes larger with droplet size, but
reduces with increase in Reynolds numbers.
The developed model for self-induced disturbance makes use of the baseline algorithm used in
the flow solver to solve the governing equations. Thus, it can be easily implemented into any
flow solver and is general enough to be applicable to any type of grid (rectilinear, unstructured
and uniform or anisotropic grids), interphase interpolation kernels, and bounded or unbounded
complex flow configurations. The approach presented here is applicable to a single droplet.
For multiple droplets, the disturbance equations can be solved in a small region surrounding
each droplet and strategies such as embedded grids or overset grid techniques can be used for
these solutions. In addition, the approach can be easily extended to include complex physics
of droplet evaporation, and chemical reactions.
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