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Abstract
The work reported in this paper focuses on the description and characterization of liquid flows in
a gaseous environment such as those undergoing an atomization process. The objective here
is to describe the complex forms encountered in order to study their dynamics on the basis
of new indicators. Completing a work presented at ILASS-Europe 2019 (Paris), the concept
of parallel surfaces is convened and extended to all scales of liquid systems. This approach
leads to the identification of specific scales. By way of illustrations, this multi-scale description
is applied to synthetic systems as well as to the case of the Rayleigh-Plateau instability.
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Introduction
Liquid atomization is a process during which the interface between the liquid and the gas varies.
Most of the time, the interface sees its surface area increasing and this is precisely to take
benefit from this augmentation that an amount of liquid is preferred under a spray system.
Investigating liquid atomization can therefore be achieved by following the temporal evolution
of the liquid-gas interface. However, the shape of the liquid systems in question is complex
and is not straightforward to characterize. In this very context, three approaches have been
developed: the Volume Scale Distribution (VSD) [4], the Surface-Curvature Distribution (SCD)
[2] and the two-point statistics applied on the phase indicator [17].
The VSD reads as the volume comprised between the liquid-gas interface and its parallel sur-
face at a distance d/2 towards the liquid region. This parallel surface delimits the system
resulting from the d-scale erosion of the liquid system. The scale derivative of the VSD is
proportional to the surface area of the eroded system. The variations of the VSD and of the
eroded system surface with the scale inform on the liquid structure characteristic scales and
give access to their dynamics.
The SCD [7, 2] finds its foundation of some results of differential geometry and reads as a
joint probability distribution density function of finding the mean and Gaussian curvatures at
some point on the liquid-gas interface. Together with the distributions of surface area and liquid
volume, a more complete set of geometrical metrics for characterizing objects of any shapes is
expected with the SCD. Introducing the mean and the Gaussian curvatures allows defining the
local characteristic scales of the interface as the local radius of curvature.
As suspected by [2], the VSD and SCD approaches are connected to each other. This has
been mathematically established in a previous work [16] but for small scales only, i.e., those
for which the demonstration may rest on differential geometry. The purpose of the present
work is to extend this demonstration to any scale of the system. From a mathematical point
of view, differential geometry must give way to integral geometry in order to deal with systems
whose surface is no longer smooth. In this context, the morphological descriptors known as the
Minkowski functionals are used because of their applicability to irregular (not smooth) surfaces.

Geometrical considerations
We consider liquid systems of any shape in a gaseous environment. Thanks to the surface
tension forces, such systems always have a smooth surface. The sets of all points having
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more than one closest point on the system’s boundary delineate the so-called medial axis. The
minimum normal distance between the system’s boundary and the medial axis is called the
reach R of the system [8]. The medial axis and the reach constitute important morphological
characteristics that vary with the deformation of the system.
To access a detailed description of the system and its evolution, we consider the series of
surfaces parallel to the system surface in the liquid phase region. This series of surfaces arises
from erosion of the initial system in the direction of the liquid phase, the erosion scale d being
twice the distance between the initial and eroded surfaces.
When d < 2R, differential geometry allows demonstrating that the volume V (d), the surface
area S(d), the area-weighted-average mean curvature H(d) and the area-weighted-average
Gaussian curvature G(d) of the d-eroded system write [16]:

V (d) = V (0)− S(0)
d

2
−H(0)

d2

4
−G(0)

d3

24
(1a)

S(d) = −2V (d),d (1b)
H(d) = S(d),d (1c)
G(d) = 2H(d),d (1d)

where Einstein notation has been used for derivatives w.r.t x, i.e.

•,x =
∂

∂x
• (2)

These equations underline the importance of the four quantities V (d), S(d), H(d) and G(d)
to describe the system. Theses quantities turn out to be the Minkowski Functionals (MF) of
the eroded system. The MF constitute a family of morphological descriptors that describe not
only the content (area) but also topology (connectivity), and shape (geometric curvature) of the
system [10]. They benefit from an extensive literature dedicated to porous media, fluctuating
interface, image analysis [11, 10, 1]. The MF generalize curvature integrals over smooth sur-
faces to the case of surfaces with singular edges and corners [1] and, when combined with the
morphological concept of parallel surfaces, can be used to characterize and model complex
spatial structures [11].
As long as d < 2R, Eq. (1) says that the MF’s of any eroded systems are obtainable from the
MF’s of the initial system. When d > 2R, this is no longer true and the system of Eq. (1) is
not valid anymore. This specific case requires the help of the integral geometry to be treated
and, in particular, the Steiner’s formula generalizing the concept of MF’s for irregular systems.
When d > 2R, we have demonstrated that Eq. (1) become:

S(d) = −2V (d),d (3a)
H(d)− lcC2(θ) = S(d),d (3b)

2πχ(d) + 2πC3(θ) = 2H(d),d (3c)

where the Euler characteristic χ(d) = G(d)/2π. (Due to length restriction, the mathematical
demonstration is not reproduced in this paper. It considers two systems, i.e., the eroded system
at scale d and the dilated system at scale 2ε of the eroded system at scale d+ 2ε, and compare
them when ε approaches zero. The full demonstration will be available in the literature [6].)
When d > 2R, the eroded system presents at least one cusp, i.e., a local singularity located
on the initial system medial axis at a distance d/2 from the initial system boundary. According
to the shape of the system, these singularities (or cusps) arrange as individual points, a line
(either linear or not) or a surface. The parameter lc in Eqs. (3) corresponds to the length of the
cusp-line. (If the cusps make a set of discontinuous points, lc = 0.) The angle θ in Eqs. (3)
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Figure 1. Representation of the different validation test cases. From left to right, the extruded Cassini oval, the
prolate spheroid and the oblate spheroid. The surfaces are coloured by the angle θ

is obtained from the angle φ between the normal creating the cusp and the medial axis, i.e.,
θ = π − φ. The functions C2 and C3 in Eqs. (3) and the lengths lc were established for three
cases (see Table 1) , i.e., extruded systems (first column), axisymmetric systems with linear
medial axis (like prolate spheroids, second column) and axisymmetric systems with circular
medial axis (like oblate spheroids, third column).

Table 1. Corrections lc, C2 and C3 appearing Eqs. (3) (h is the height of the extruded system, rc is the radius of
the medial axis)

Extruded Axisym. system Axisym. system
system lin. axis circ. axis

lc h 0 2πrc
C2(θ) tan θ − θ - tan θ − θ
C3(θ) 0

(1− cos θ)2

cos θ

θ

cos θ
− sin(θ)

Numerical Validation
We start by validating Eq. (3) using synthetic shapes such as those shown in Fig.1, i.e., the
extruded Cassini oval, the prolate spheroid and the oblate spheroid. In all situations, an ap-
proximation of the level-set function is first initialized before proceeding to the re-initialization
algorithm of [14] to ensure that the different level-set form parallel surfaces. For this purpose,
we use the ARCHER code [12, 18]. The volume V (d), surface area S(d), mean H(d) and
Gaussian curvatures G(d) for each level-set d/2 are computed using the method of [7, 3] which
has the main advantage of incorporating a topological constraint in the curvature calculation
(the Gauss-Bonnet theorem). We use prior versions of the routines now available through the
Mercur(v)e project *.
To obtain the set of points of the medial axis, we compute for each vertex on the triangulated
zero level-set surface, the location of the intersection between the normal issuing from this
vertex and either the xz-plane for extruded systems, the x axis for axisymmetric objects with
linear medial axis or xy-plane for axisymmetric objects with circular medial axis. Then, the
angle θ and distance from the medial axis can be readily computed using trivial trigonometry.
For each scale d/2, we sum the contribution lcC2, C3 of all vertex whose distance from the
medial axis falls within an interval d/2 −∆d/2 : d/2 + ∆d/2. ∆d was chosen sufficiently small
for not loosing some scale dynamics and sufficiently large to ensure statistical convergence.
Generally, 150 to 200 points for the scale parameter d/2 were prescribed, ranging from zero to
the maximum erosion scale (i.e. the scale beyond which the system is fully eroded).

*http://docs.mercurve.rdb.is/

http://docs.mercurve.rdb.is/
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Figure 2. (a) Volume V (d), (b) surface area S(d), (c) mean curvature H(d) and (d) Euler characteristic χ(d) as a
function of the erosion scale d for the extruded Cassini oval.

The extruded Cassini oval
The Cassini oval is parametrized with the location of the foci a aligned with the x axis, and the
shape parameter b which were chosen in such way that b/a = 150/148. The scale d which
ought to be reached for the Cassini oval to be fully eroded is the size of the bulge and is equal
to D = b2/2a. The reach for such a parametrization of the Cassini oval is equal to half the size
of the neck and is given by R = (b2 − a2)1/2. Hence, we then expect the correction lcC2 (see
Eq. 3) to be non-zero for scales d ' 0.32D.
Figure 2 depicts the functions V (d), S(d), H(d) and χ(d) for the Cassini oval. (The scale d is
normalized by D = 2b and the functions (except χ(d)) are normalized by their respective values
at d = 0.) We observe that the function H(d) has to be corrected to reproduce the function
S(d),d. As expected, the correction starts at the scale d ≈ 0.32D. At this scale, S(d),d shows a
sudden peak followed by a sharp decrease. This behavior, nicely reproduced by the correction
lcC2, is a characteristic of a cusp due to a throat or bottleneck. The scale at which this first
peak appears is therefore equal to the diameter of the Cassini oval bottleneck. At d ≈ 0.65D,
S(d),d starts a continuous increase that ends as a peak at the maximum scale D. This behavior
is well reproduced by the function lcC2 given in Eqs.(3) and in Table 1. This second peak is
imposed by the bulge of the oval and occurs at the maximum bulge scale which appears to
be the one of the system also. We see here that the peak shapes of the function S(d),d allow
dissociating bottleneck and bulge characteristic scales. The value of H(d) between the two
peaks indicates that the eroded system becomes the union of two disconnected systems for
this range of scales.

Validation on axisymmetric systems
Numerical validations were also performed for axisymmetric systems such as a prolate and
an oblate spheroid (see Fig. 1). The medial axis of these systems is linear and circular, re-
spectively. Equations (3) together with the expressions of the length lc and of the functions
Ci(θ) given in Table 1 (second column for the prolate spheroid and third column for the oblate
spheroid) succeeded in both cases to connect the MF’s of the eroded systems, without any
restriction on the value of the erosion scale d.
As expected, for the prolate system no correction of H(d) was necessary to reproduce S(d),d
since lc = 0. However, for the oblate system, H(d) requires a correction proportional to the
circumference of the medial axis as indicated in Table 1. For both systems, a correction of χ(d)
was necessary to reproduce the scale derivative H(d),d. (The detailed results for these cases,
as well as for others, will be shortly available in [6].)
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Application to multiphase flows
The analysis is now applied to real systems. Here we focus on the ability of parallel sets to
provide insights into the morphology of deformed liquid structures evolving in a gaseous atmo-
sphere in the case of a cylindrical liquid ligament submitted to the classical Plateau-Rayleigh
instability.

Description of the ARCHER code
Data of liquid/gas flows are gathered using the High-Performance-Computing code ARCHER
developed at the CORIA laboratory [12]. It is based on the one-fluid formulation of the incom-
pressible Navier-Stokes equation which is solved on a Cartesian mesh, viz.

∂t ρu + ∇ · (ρu⊗ u) = −∇p+ ∇ · (2µD) + f + γHδsn. (4)

p is the pressure field, D the strain rate tensor, f a source term, µ the kinematic viscosity, ρ the
density, γ the surface tension, n the unit normal vector to the liquid-gas interface, H its mean
curvature and δs is the Dirac function characterizing the location of the liquid gas interface.
For solving Eq. (4), the convective term is written in conservative form and solved using the
improved Rudman technique [13] presented in [18]. The method of [15] is used to compute the
viscous term. To ensure incompressibility of the velocity field, a Poisson equation is solved.
The latter accounts for the surface tension force and is solved using a MultiGrid preconditioned
Conjugate Gradient algorithm (MGCG) [19] coupled with a Ghost-Fluid method [9].
A coupled level-set and volume-of-fluid (CLSVOF) solver is used for transporting the interface,
the level-set function accurately describing the geometric features of the interface (its normal
and curvature) and the volume-of-fluid function ensuring mass conservation. The density is
calculated from the volume-of-fluid (or liquid volume fraction) as ρ = ρlφ + ρg(1 − φ), where
ρl, ρg is the density of the liquid and gas phase. The dynamic viscosity (µl or µg) depends on
the sign of the Level Set function. In cells containing both a liquid and gas phase, a specific
treatment is performed to evaluate the dynamic viscosity, following the procedure of [15]. For
more information about the ARCHER solver, the reader can refer to e.g. [12, 18]. The volume
V (d), surface area S(d), mean H(d) and Gaussian curvatures G(d) for each level-set d/2 are
computed using the method of [3].

The Plateau-Rayleigh instability
This section presents the case of a cylindrical ligament subject to the surface tension driven
Rayleigh-Plateau instability.
We employ the same numerical configuration as [2]. The liquid and gas density are ρL = 1000
kg.m−3 and ρG = 1 kg.m−3, respectively. The viscosity of the liquid phase is µL = 1 10−3

kg.m−1.s−1, and that of the gas phase µG = 1.879 10−5 kg.m−1.s−1. The surface tension
γ = 0.072 kg.s−2. The ligament has an initial radius a = kLx/π where the non-dimensional per-
turbation wavenumber k = ka = 0.55 applies on the x axis. The amplitude of the perturbation
was set to 0.1a. Only a quarter (half) of the ligament is simulated in the azimuthal (streamwize)
direction. The computational domain is Lx = 3Ly/2 = 3Lz/2 = 1.5 10−4 m and 192× 128× 128
grid points are used in x, y and z directions, respectively.
For the selected sinusoidal perturbation wave-number, the cylindrical ligament is unstable
and, according to the Rayleigh theory, the perturbation temporal growth rate is equal to ω =
0.318τγ/(8)1/2 (where τγ = 0.045 ms) and the break-up time is tbu = τγlog(D/2η0)/(ω(81/2)),
i.e., τbu = 0.115ms. The deformation of the ligament manifests first by a growth of the amplitude
of the sinusoidal perturbation and, second, by a rearrangement of the ligament as an almost
spherical bead connected with a small scale ligament. The rupture of this structure produces
one big drop (from the bead) and one satellite drop, the latter coming from the relaxation of the
small ligament when left alone after the break-up.
Figure 3 presents the functions V (d), S(d), H(d) and χ(d) for the three cases, i.e., during the
initial sinusoidal perturbation growing (case (1)), just before the break-up event (case (2)) and
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Figure 3. (a) Volume V (d), (b) surface area S(d), (c) mean curvature H(d) and (d) Euler characteristic χ(d) as a
function of the erosion scale d for a liquid ligament undergoing the Plateau-Rayleigh instability. Results are for

t/τbu = (blue) 0.42, (red) 0.96, (yellow) 1.09.

after the break-up event (case (3)). As for the previous situations, we note that the functions
S(d) and V (d),d remain proportional for the three cases (Fig. 3(b)). As expected, the functions
H(d) and S(d),d match well for cases (1) and (2), i.e., those having a linear medial axis and
requiring no correction at this level. Since case (3) shows an quasi-oblate element, a correction
of H(d) appears necessary to retrieve S(d),d. Once again we note that the correction provided
by Eq. (3) apply very well.
Since the system remains homeomorphic to a cylinder before break-up, the Euler characteristic
χ(0) is equal to zero for cases (1) and (2) (see Fig. 3(d)). However, for other scales, χ(d) varies
according to the number of elements constituting the eroded system. This number increases
when the erosion scale matches the diameter of a bottleneck or a pinch-off, or decreases when
the erosion scale matches the diameter of a swell section. The scales concerned by this Euler
characteristic change are rendered visible by the peaks of the function H(d),d. (Note that, here
again, Eq. (3) and the elements of Table 1 combine very well and ensure a good representation
of the function H(d),d). Referring to the observations made in Fig. 2, the first peak for case (1)
indicates the scale of a pinch-off and the second one the scale of a bulge. These two scales
correspond to the smaller and larger diameters of the deformed ligament, respectively. For
case (2), the first peak indicates the diameter of the pinch-off between the ligament and the
bead, the second peak indicates the larger diameter of the ligament and the third peak is the
characteristic scale of the bead. For case (3), χ(0) = 4 since the system has transformed as
two drops, the small one looking like a peanut. This value changes as a function of the scale
indicating that these drops are not fully spherical yet.
Figure 4 displays the temporal evolution of three specific scales: Dmin, D1max and D2max, the
time being normalized by the theoretical break-up time τbu. These scales are those at which
H(d),d exhibits a peak with Dmin < D2max < D1max. Being the smallest scale for which a
correction of χ(d) is required, Dmin is equal to 2R. And the fact that the reach of the system is
associated with a peak of the function H(d),d means that it always corresponds to the radius of
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Figure 4. Time evolution of the reach Dmin, the maximum erosion scale D1,max and the size of the satelite
maximum erosion scale D2,max for the Plateau-Rayleigh instability. The two vertical black lines depict the first

departure of Dmin from an exponential behavior and the apparition of the pinch-off, respectively. The three time
instant labelled (1) t = 0.42τbu, (2) t = 0.96τbu and (3) t = 1.09τbu are also displayed by vertical dotted lines

a bottleneck or of a pinch-off.
The unstable nature of this system is manifested by a marked divergence of the scales Dmin

and D1max. The scale D1max continuously increases following very well the exponential growth
obtained from the linear theory and shown by the black line. Similarly, the scale Dmin reports a
continuous decrease that follows the theoretical behavior up to t/τbu = 0.7. After this time, the
linear theory is not appropriate anymore to reproduce the evolution of Dmin which, therefore,
is likely affected by the first action of non-linear effects. The black dash line in Fig. 4 shows
that Dmin decreases as t2/3. As reported by the literature ([5] for instance) this temporal de-
pendence reveals that the pinch-off contraction has reached an inertial regime for which the
dominant resistance against surface tension stems from the inertia of accelerating fluid ele-
ments. This regime lasts until t/τbu = 0.9 after which another dynamics appears. This last
behavior likely represents the visco-capillary regime for which the dominant resistance against
surface tension stems from viscous forces. The theory predicts a linear dependence between
the pinch-off diameter and the time for this regime that is not obvious in Fig. 4 although the
points seem to align close to the break-up event. At this very time (t/τbu = 0.9), a third peak of
H(d),d appears at scale D2max. The appearance of this scale demonstrates that the pinch-off
evolution divides the liquid system in two isolated parts, confirming the approach of a break-
up event. Each of these parts have their own maximum scale, D2max being the one of the
ligament. We see that during break-up, this scale does not vary significantly.
The succession of the threeDmin decay regimes identified in Fig. 4 agrees in a negative second
time derivative just before the break-up event. We see in this last example that the multiplication
of H(d),d peaks also indicates the imminence of break-up.

Conclusions
In this paper, the connections between the MF’s of parallel systems obtained by erosion have
been established for the whole initial system scale range. As far as liquid atomization process
is concerned, this description technique provides interesting results. For instance, the first
information of interest is the fact that a system having a reach less than the maximum scale
denotes a liquid system not in equilibrium with a shape that changes over time. When the
erosion is greater than twice the reach, the MFs are not simply related to their successive
derivatives and depend on local properties of the interface. This dependence of the MFs is
highly a function of the shape of the system medial axis. Furthermore, it allows identifying
specific scales such as those for which a bottleneck or a pinch-off appears. As done for the
case of the Rayleigh-Plateau, exploring the dynamics of these scales appears a good way to
detect the imminence of break-up events.
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Nomenclature
d Scale [m]
G(d) Area-weighted-average Gaussian curvature of d-eroded system [-]
H(d) Area-weighted-average mean curvature of d-eroded system [m]
S(d) Area of d-eroded system [m2]
V (d) Volume of d-eroded system [m3]
R Reach of a system [m]
χ(d) Euler characteristic of d-eroded system [-]
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