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Abstract 
Previous experimental studies of a vertical monodisperse non-evaporating isopropanol droplet 
stream found that consecutive pairs of droplets drew close to one another, eventually 
coalescing and continuing their fall. It is the phenomenon of the convening of pairs of 
consecutive droplets in this configuration that is our fundamental paradigm for droplet grouping 
in spray systems. 
In the current work, we tackle the modelling aspects of the aforementioned configuration from 
the vantage points of classical theoretical analysis. Our aim is to test the ability of previous 
related research reported in the literature to ascertain the extent to which it is able to provide 
a sound basis for predicting the experimental observations, thereby giving insight into the 
mechanisms seemingly at play in droplet grouping dynamics. A model based on the Oseen 
approximation is applied. The model is extended to consider the behaviour of pairs of droplets 
having dissimilar radii and the case when the droplets are evaporating. Excellent agreement 
with available experimental data was found.   
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Introduction 
The efficiency of spray systems for various applications, from fuel combustion to precise 
surface coating, relies on the dynamics of liquid droplets, and among other things, on their 
tendency to form groups, a tendency that has an influence on their evaporation, the drag force 
applied to them, and on their final settling point. This predisposition has ramifications in energy 
and transportation systems, coating, as well as inhalation systems. Increased relevance is 
also assumed, in view of current trends of introducing biofuel blends in practical combustion 
systems.  
In order to get a deeper understanding of droplet grouping a simple configuration was 
previously examined experimentally [1, 2]. An appropriately manipulated frequency was 
applied to a vertical isopropanol droplet stream generator thereby producing a monodisperse 
non-evaporating droplet stream. It was found that consecutive pairs of droplets drew close to 
one another, eventually coalescing and continuing their fall. It is the phenomenon of the 
convening of pairs of consecutive droplets in this configuration that is our fundamental 
paradigm for droplet grouping. 
Two basic models for describing the subject of falling droplets/spheres are those of Stokes 
and Oseen. Stokes [3] developed the renowned expression for the drag force acting on a 
sphere moving through a viscous fluid (Stokes' law) for low Reynolds number. Oseen [4] 
suggested an improvement by accounting for the convection term in the momentum equation 
in an approximate way. He derived a drag force that essentially extends Stokes' law. 
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Based on these fundamental works, further studies were conducted to better understand the 
motion of two (or more) falling spheres moving along their line-of-centre. These studies 
addressed the phenomenon whereby spherical objects moving together tend to change the 
surrounding flow field, thus affecting the drag force acting on each sphere. In some cases, 
there is even an attraction between the spheres, such that they eventually group together. 
Thus, Stimson and Jeffery [5] derived expressions for the drag forces acting on two spheres 
falling one above the other. The theory, which was based on Stokes' law, covered the case of 
two different-size spheres but did not address the attraction phenomenon, as it took the 
distance between the spheres to be constant. 
Based on both Oseen's theory and the earlier work by Stimson and Jeffery [5], expressions 
for the drag forces acting on two falling spheres were obtained by Happel and Pfeffer [6]. 
These expressions were comprised of Stimson and Jeffery's drag force, which accounted for 
the general interaction between the falling spheres, and of an Oseen correction term, which 
accounted for the attraction phenomenon. Although the work of Happel and Pfeffer included 
experiments that validated their theoretical deliberations, it covered only the case of equal-
sized spheres (see, also, [7]) 
Many other studies proposed relatively complex mathematical models for simulating the 
motion of spheres in a group, or offered somewhat heavy numerical calculations for this 
purpose. For example, studies [8], [9] discuss the possible attraction between the spheres 
using complex models, but do not account for the case of different-sized spheres.  
In the current work, rather than resorting to a time-consuming CFD solution, we propose a 
straightforward amendment to ideas expounded previously. In addition to considering the way 
in which two identical droplets falling along their line-of-centres draw closer to one another we 
also discuss the case when the two droplets are dissimilar in size. Finally, we examine the 
influence of droplet evaporation on the way in which the droplets draw closer together. 
 
The Physical Problem and Governing Equations 
In this section, the physical theory of the investigated problem will be discussed. 
 

 
 

Figure 1: Typical sections of a stream of pairs of descending droplets; time increases from left to right – the 
notation defines various distances that will be referred to later [1 ,2]. 
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We make use of the following assumptions: (a) Low Reynolds number based on the average 
droplet diameter and the terminal velocity, i.e. Re<1, (b) droplets are modeled as semi-rigid 
spheres, in the sense that they always maintain a perfect spherical form, although they may 
also evaporate over time, (c) detailed coalescence effects are neglected. Once two droplets 
touch, they become one larger spherical droplet within an infinitesimally short time duration. 
The governing equations of motion for two droplets are:  
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subject to initial conditions: 
𝑢்௢௣(0) = 𝑢଴                                                                                                                           (3) 

𝑢஻௢௧௧௢௠(0) = 𝑢଴ + ∆𝑢                                                                                                                                 (4) 
where m  denotes mass of the droplet with the suffices self-evidently referring to the top and 

bottom droplets, u  is the velocity,  ∆𝑢 is the increment in the velocity of the lower droplet when 
the upper droplet is initially released, and the forces F acting on the upper and lower droplets 
are the drag forces, buoyancy forces and gravity (denoted by suffices d, b and g), respectively. 
If the droplets are evaporating the following equation expressing the 2d -law is appended: 

[𝑑(𝑡)]ଶ = [𝑑(𝑡଴)]ଶ − 𝐾𝑡                                                                                                          (5) 
where d  is the droplet diameter and K  the evaporation coefficient. 

As we are mainly interested in the way in which the distance between the droplets ( 2a ) 

behaves as they draw close to one another we subtract Eqs.(1) and (2) and obtain the 
equations: 
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= 𝑢்଴௉ − 𝑢஻௢௧௧௢௠                                                                                                              (6) 
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subject to: 

𝑎ଶ(0) = 𝑙                                                                                                                                (8) 

ௗ௔మ(଴)

ௗ௧
= −∆𝑢                                                                                                                           (9) 

where  𝑙 is the distance already travelled by the bottom droplet at the instant when the top 
droplet begins to move. We consider the drag forces acting on the top and bottom droplets to 
be comprised of a basic drag force and, following [6], an extra force experienced by the bottom 
droplet. The basic drag force will be computed using the formulae derived by Stimson and 
Jeffery [5]: 

𝐹௕௔௦௘ଵ = −
ఓ೑గଶ√ଶ

௔
∑ (2𝑛 + 1)(𝐴௡ + 𝐵௡ + 𝐶௡ + 𝐷௡)ஶ

௡ୀଵ                                                                (10) 

𝐹௕௔௦௘ଶ = −
ఓ೑గଶ√ଶ

௔
∑ (2𝑛 + 1)(𝐴௡ − 𝐵௡ + 𝐶௡ − 𝐷௡)ஶ

௡ୀଵ                                                              (11) 

with the suffices base1 and base2 referring to the top and bottom droplets with radii 1r , 2r

,respectively, in which the coefficients n n nA ,B ,C  and nD  are complicated expressions of 

hyperbolic and geometric functions involving the radii of the two droplets and the distance 
between them and a  is a constant chosen so that the droplets can have any radii and any 
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centre distance greater than the sum of their radii. In fact, although Stimson and Jeffery [5] 
presented the aforementioned expressions, they only made use of a reduced form, which 
results from assuming the two droplets are identical in size. We retain the full expressions for 
generality and future reference. The extra force experienced by the bottom droplet, unlike that 
of [6], is due to Proudman and Pearson [10] who gave an improved Stokes' solution in the 
neighborhood of single sphere and an improved Oseen's solution at infinity, matching the two 
solutions in a common region of validity. Hence, the form of the two forces on the RHS of 
Eq.(7) is: 
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In these last three equations f  is the viscosity of the fluid environment and U is the average 

terminal velocity. Note that the last term on the RHS of Eq.(12) involving the ln term is the 
more accurate improvement on the formula used by Happel and Pfeffer[6] for the drag on the 
bottom droplet. This accounts for slowing of the bottom droplet due to inertial effects. Eqs.(6) 
and (7) are applied to multiple pairs of droplets inserted in the vertical stream. The governing 
equations were solved using a standard MATLAB ODE solver. 
 
Results and Discussion 
The results to be discussed were based on use of the data listed in Table 1. We  assume that 
the droplets are equal in size and non-evaporating. We compare the prediction of the theory 
with measured data of [1, 2]. We begin using Happel and Pfeffer’s cruder model [6] for which 

the term   29 / 40 Re lnRe  is absent in Eq.(12). In Figure 2 we plot the distance between two 

consecutive droplets ( 2a ) and the distance between two consecutive pairs of droplets ( 1a ), as 

functions of time. For both 1a and 2a  fairly satisfactory qualitatively similar behaviour is 

obtained. A more detailed comparison is provided in Figure 3. In this figure, following notation 
in Fig. 1, the symbol b signifies the distance between two consecutive pairs of droplets after 

each pair has coalesced, whereas the symbol 2g stands for the distance between the bottom 

droplets in each consecutive pair, long before coalescence takes place, at an early stage of 
the motion. We did not account for the complex process of coalescence. Rather, 
instantaneous coalescence was assumed upon the two droplets in a pair coming into contact 
with one another. This is not unreasonable, as the experiments indicate a typical time of 

coalescence of the order of 410 s whereas a characteristic time for the motion until a pair of 
droplets convene is one order of magnitude greater. The size of the resulting single coalesced 
droplet can be straightforwardly found using conservation of mass. The various distances 
appearing here are plotted as a function of distance from the orifice of the apparatus producing 
the droplets. There is overall qualitative agreement for those distances relevant to the pre-
coalescence stage. For the post-coalescence period the agreement is less satisfactory, 
although correct orders of magnitude are predicted. 
We now allow the droplets to evaporate according to Eq.(5). Note that, in the experiments, it 
was assumed that the droplets are at a constant temperature precluding their evaporation. 
Figure 4 shows the effect of permitting droplet evaporation during the fall of the droplets. We 
observe that the effect of allowing droplet evaporation is deleterious, as the curve of the 
predicted distance between the droplets distances itself further away from the experimental 
results than the equivalent curve obtained without droplet evaporation. This would seem to  
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Table 1 – Data used for numerical solution.  

 Parameter Value Units 
Droplets 

(isopropanol) 
d 
                     

K  

112 
784 
783              

m  

[𝑘𝑔 ⋅ 𝑚ିଷ] 

𝜇𝑚ଶ ⋅ 𝑠ିଵ 
Medium 

Fluid (air) 

𝜌௙ 

𝜇௙                
1.196 
1.83

⋅ 10ିହ 

[𝑘𝑔 ⋅ 𝑚ିଷ] 
[𝑘𝑔(𝑚

⋅ 𝑠)ିଵ] 

Initial 
Condition  

𝑢(𝑡଴) -14.9 [𝑚 ⋅ 𝑠ିଵ] 

 
Figure 2: Distance between two consecutive droplets ( 2a ) and between two consecutive pairs of droplets ( 1a ) 

as a function of time; comparison between measured and predicted results using Happel and Pfeffer [6] theory. 

 

Figure 3: Various distances of droplets in pairs as function of distance to the orifice (see text for definition of 
distances) 

support the correctness of the aforementioned constant temperature assumption of the 
experiments. 
In contrast to Figure 3, results obtained using the refined theory of Proudman and Pearson[10] 

as included in Eq.(12) are shown in Figure 5. For 1a  the comparison with experiment is, once 

again only qualitatively similar. However, the match between the distance between two 
droplets and the experimental measurements is quite remarkable. What is surprising is that 
whereas the theory is predicated on a Reynolds number less than unity, the experiments were  
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Figure 4: Effect of allowing the droplets to evaporate on the distance between two consecutive droplets ( 2a )  

performed with a reported Reynolds number of the order of 100. Figure 6 summarizes a 
comparison between experiment, the drag force used by Happel and Pfeffer [6] and the 
improved drag force for the bottom droplet. The vast improvement delivered by the latter is 
clearly visible, seemingly indicating that matching the Stokes solution near a single sphere 
and the Oseen solution at infinity in a common region of validity captures essential features of 
the flow field in the vicinity of the pair of droplets. 
Finally, in Figure 7, Figure 3 is re-drawn with the improved drag force on the bottom droplet. 
Despite the improvement in the pre-coalescence curves, the post-coalescence distances 
remain generally unchanged. 
The way in which the droplet motion is considered here can be termed a far-field view. This 
does not account for any fluid motion within the droplets nor any fluid motion between the 
droplets, as well as any influence of the droplets on the surroundings into which they are 
injected. Included in the latter is the way the flow field in between pairs of droplets impacts on 
their behaviour. Work by Kotsev [11] makes a step in this direction in simulations for a problem 
allied to one considered here carried out using the commercial COMSOL code. However, flow 
over a single pair of solid spheres fixed relative to one another is computed. The results 
provide an insight into the way the flow field around and between spheres varies as a function 
of the distance between the spheres centres and the Reynolds number. The proliferation of 
vortices that are formed as the Reynolds number increases from 10 to 200 will drastically 
effect the drag forces on the spheres. The top sphere faces a reduced drag compared to the 
bottom one, decreasing rapidly with Re, and becoming negative for Re=200 implying a weak 
attractive effect between the spheres. In general terms, this is in consonance with the ideas 
of [6] for low Reynolds numbers. However, since solid spheres are studied in [11], motion 
within liquid droplets is excluded. A closer view, which includes all the aforementioned intra-
droplet, inter-droplet and droplet-surrounding fluid effects, will necessitate more 
comprehensive CFD efforts. These will undoubtedly reflect the physics more accurately, but 
at the cost of high-powered computing facility simulations, which are not without their own 
limitations. In view of the relatively simple framework we have used, the question remains why 
the application of the classical theories applied in the current work manages to replicate the 
experimental results for the time variation of the distance between two consecutive droplets 
so well.  
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Figure 5: Distance between two consecutive droplets ( 2a ) and between two consecutive pairs of droplets ( 1a ) 

as a function of time; comparison between measured and predicted results using improved drag force term 
(Eq.(12)) 

 

Figure 6: Distance between two consecutive droplets ( 2a ) as a function of time; comparison between 

experimental data and predictions of original theory and improved theory. 

 

.  

Figure 7: Various distances of droplets in pairs as function of distance to the orifice (see text for definition of 
distances) using the improved drag force on the bottom droplet (Eq.(12). 
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Conclusions 
The dynamics of the vertical motion of pairs of droplets and their grouping was examined using 
classical theory from the literature. An improved drag force acting on the bottom droplet of 
each pair was suggested, based on the more comprehensive analysis of Proudman and 
Pearson [10]. It was found to enable excellent replication of the experimental measurements 
for the evolution of the distance between a pair of droplets. This agreement is surprising, given 
the large disparity between the Reynolds number of the experiments and the Reynolds 
number less than unity upon which the classical expressions were based. Since the standard 
drag force acting on a droplet requires integrating the stress tensor on the body surface it is 
hoped that data from detailed CFD calculations will shed light on the success of the current 
simplified model. 
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