RES MEDICA
 Journal of the Royal Medical Society

The Biology of Mongolism

R.A. Bailey

Fellow of the Royal Medical Society

Abstract

Based on a Dissertation read before the Royal Medical Society on Friday. 2nd March, 1962.

Mongolism is a neuro-endocrine disorder, based on a molecular disturbance, which is manifested by a chromosome abnormality. The mental defect is probably due not specifically to a gene or gene complexes on the chromosomes but to a generalised imbalance of the chromosome set as a result of aneuploidy.
There are three types of chromosome abnormality which have so far been described in mongols;

1. Non-disjunction.
2. Translocation.
3. Mosaics.
[^0]ISSN: 2051-7580 (Online) ISSN: 0482-3206 (Print)
Res Medica is published by the Royal Medical Society, 5/5 Bristo Square, Edinburgh, EH8 9AL
Res Medica, Spring 1963, 3(3): 16-18
doi: $10.2218 /$ resmedica.v3i3. 395

THE BIOLOGY OF MONGOLISM

By R. A. BAILEY
Ficllow of the Rowal Medical Socicts.
Based on a Dissertation read before
the Royal Medical Society on Friday. Ind March, 1962.

Mongolism is a nemro-endocrinc disorder, based on a molecolar disturbance, which is manifested be a chromosome abmomality. 'The mental defect is probably due not specifically to a gene or gene complexes on the chromosomes but to a generalised imbalance of the chromosome set as a result of ancuploidy.
'There are three types of chromosome abnomality which have so far been described in mongols

1. Non-disjunction.
2. Translocation.
3. Mosaics.

NON-IISJUNC'IION

Mongols in this group have ${ }^{-}$, chromosomes with chromosome 21 trisoms. 'This was first described by I cejeme in 1959' and then by Court Brown and his colleagness at the W Cstern Cencral Hospital in lidinburgh in 1060.

An American family described by Miller et alia throws an interesting light on non-disjunction. 'The father died of chronic lymphatic leukacmia (a condition in wheh chromosome abommalities have been (emonstrated). Itis sister and his niece be another sister were both mongols. His wife and another son were both normal. genetically and mentally.

Ilis son was a mental defectice (IQ 21) with strabismus. cleft palate. cmuchoidism and multiple skeletal abnonmalitics. 'This bos's sex chromosomes were found to be XXXY and for this to be possible no fewer than three nondisjunctional events must have occurred. It is probable that all theree of these crents occurred on the father's side because:
(a) The father was 32 and the mother 23 when the child was bom and non-disjunctional effects are more common with increasing age.
(b) The father's sister and niece were both mongols and probably had meiotic non-disjunctions.

I'RANSLOCA'I'ION

'l'his was the next type of chromosome abnomality to be described in mongols. Frocearo. Kasir and Lindsten' were the first workers to described such a case (1060).

Mongolism can be inherited by translocations involving chomosome 21 and one of the other acrocentric chromosomes-mombers $13,14,15$ and 22. A chromosome comnt would reveal only $\ddagger 6$ chromosomes in such cases but Karyotype analesis shows that extra material was present on one of the acrocentric chromosomes.

Pemrosce points out that in cases of $21: 22$ translocation paternal age is a highly significant actiological factor. In these cases the average age of the fathers were 10 years above that of fathers in the general population and in only one of the 8 cases so far described was the father under the age of +0.
'I'his was not found in casces of $21: 13$, $1+$ or 15 translocation.
It has becon shown that the increased risk of young mothers with one mongol child producing a second child similarly affected is mainly due to tamilies in which translocation has oceurred. 'This is bone out by a Swedish family* in which the parents were healthy. 'The wife's first pregnancy ended in abortion. Ifer second pregnancy resulted in a live born mongol as did her third. 'Ihese children mofortmatel- died before chromosome analysis conld be carried out. 'The fourth pregnancy resulted in a lise born mongol of translocation resulting in a fanily of mongols.

If a mother is meler 25 and lier first child is a mongol the chances of her producing another mongol are fifty times that of a random group of women of the same age.

If the mother is between 25 and if her chances are only five times greater than that of a random group of the same age.

If the mother is orer $3 j$ her chances are the same as that of a random group of the same age.

Young mothers of mongol children will run a high risk of producing a second affected child becanse cither ther or their hasbands have a chromosome abomalits. In the older mother this is a rare event so that the risk is the same as the random risk allowing, of conrse. for age.

MOS:UCS

The last type of chromosome abnormality described in mongols are the Mosaics. Mosaicism in crtogenic usage describes a condition in which a sub)stantial minority of cells differ from the majority in their chromosomal content.

Six cases of mosaicism have been described cither in mongols or in people with mongoloid features. Four cases ${ }^{9-12}$ have had two stemlines (i.c. some cells have had f^{6} chromosomes and others f^{-}(hromosomes) and two cases ${ }^{13-14}$ have had three stemlincs ($46,+7$ and +8 chromosomes).

This mosiacism may be explaned by mitotic non-disjunctions in a nomal diploid resulting in one cell with 48 chromosomes and one non-viable cell with $4+$ chromosomes. The ${ }^{7}$, chromosome cells may arise by chromosome loss throngh anaphase lagging, a phenomena which has been deseribed in plants. ${ }^{\text {T }}$

SUMMARY

Three tepes of genetic abnomalities have been deseribed in mongols. 'I'hese have been briefly reviewed here.

REFERENC「ES

LEJEUNE. J., GAUTIER. M., TURPIN. R. (1959) (. R. Acad. Sei Paris. 258, 602.
JACOBS. P. A.. BAIKIE. A. G., COURT BROWN, W. M.. STRONG. J. A. , 1 ,
MILLER. O. J., BREG. W. R., SCHMICKEL. R. D. TRETTER. W. 11961 , Lancet ii 78.
FRUCARRO. M., KAYSIR. K.. LINDSTEN. J. (1960). Lancet i 724.
PENROSE. L. S. (190ㅇ. Lancet i 1101.
HAMMERTON, J. L.. BRIGGS. S.. GIANEIJLI. F.. (CARTER. ©. O. (1961) Lancet ii. 788.
EK. J. I.. FALK. V., BERGMAN. S.. REITLAU. J. (1961). Lancet ii, $\overline{5} 26$.
CARTER, C. O., EVANS, K. A. (1961). Lancet ii. 785.
CLARKE. (․ M.. EDWARDS, J. H.. SMALLPIECE V. 1961). Lance i. 1028.
10. NICHOLLS, W. W.. FABRIZIO. D. P. A.. CORIELL. L. L.. BISHOP. H. C.. BOGGS, T. R. AMER. J. DIS C'HILD (1961) 102, 45?.
11. HYASHI. T.. HSU. T. C.. CHAO. D. (1962). Lancet i, 218.
12. RICHARDS. B. W.. STEWART. A. 1966^{2}). Lancet i. 275.
13. FITZGERALD. P. H., LYCETTE, R. R. (1961). Lancet ii, 212.
14. GUSTAVSON. K. H.. EK. J. I. (1961). Lancet ii. 319.
15. ELLIS. J. R., JANICK. J. J. Hered 50, 272.

Also referred to were-
BENDA, C. E. (1962). Lancet i, 163.
HAMERTON, J. L., JAGIELLO. G. M.. KIRMAN. B. H. (1962, B.M.J. 1, 290.
PENROSE. L. S., ELLIS. J. R., DELHANTY. J. D. M. (1960). Lancet ii. 409.
POLANI, P. E., BRIGGS. J. H.. FORD. C. E.. CLARKE. C. M.. BERG. S. M. 119601. Lancet $\mathrm{i}, 721$.

[^0]: Copyright Royal Medical Society. All rights reserved. The copyright is retained by the author and the Royal Medical Society, except where explicitly otherwise stated. Scans have been produced by the Digital Imaging Unit at Edinburgh University Library. Res Medica is supported by the University of Edinburgh's Journal Hosting Service: http://journals.ed.ac.uk

