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Abstract

Although it is well-known to most historical linguists that the comparative

method could in principle be used to predict hitherto unobserved words in

genetically related languages, the task ofword prediction is rarely discussed

in the linguistic literature. Here, we introduce ‘reflex retrodiction’ as a

new task for historical linguistics and report an ongoing experiment in

which we use a computer-assisted workflow to retrodict reflexes for so far

unobserved words in eight varieties of Western Kho-Bwa (a subgroup of

Sino-Tibetan). Since, at the time ofwriting this report, the experiment is still

ongoing, we do not report concrete results, but instead provide an estimate

of our expectations by testing the performance of the computational part

of our workflow on existing language data. Our results suggest that reflex

retrodiction has the potential of becoming a useful tool for historically

oriented fieldwork.

1 Introduction

It is well known that the comparative method cannot only be used to re-

construct languages no longer reflected in writing systems, but that it can

also be used to predict structures or words in languages that have not yet

been investigated or observed. Thus, when based on comparative and

internal evidence, Saussure (1879) proposed the existence of coefficients

sonantiques in the system of the Indo-European proto-language he pre-

dicted that – if ever a language was found that retained these elements

– these new sounds would surface as segmental elements in certain cog-

nate sets of the so far undetected language. These sounds are nowadays

known as laryngeals (*h₁, *h₂, *h₃, see Meier-Brügger 2002), and when

Hittite was identified as an Indo-European language (Hrozný 1915), one of
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the two sounds prognosticated by Saussure could indeed be identified in

several word forms, thus providing evidence for Saussure’s original ‘pre-

diction’.

Saussure’s prediction was not planned as such, and it is unlikely that

Saussure even thought of his theory in this way. That prediction in this

sense, which is more appropriately called retrodiction (since it is not direc-

ted towards future events), is possible in our discipline, however, is well-

known, even if it less frequently discussed as such in the literature. When

dealing with linguistic retrodiction, linguists try to infer the structure of so

far unobserved datapoints based on the data available to them at a given

point in time. Classical examples for linguistic retrodiction are the univer-

sals of grammar proposed by Greenberg (1963). As these universals are

usually stated in the form of implications, we can – provided the universal

holds – infer the presence of one structural feature if we know the feature

that implies it (see also Blevins 2004 on predictions in the field of histor-

ical phonology). Another example is the common practice in historical

linguistics to retrodict missing reflexes of cognate sets when searching

for etymologies in a given language (see, for example, Michael et al. 2015:

196). Even among speakers living in contact areas, we can at times ob-

serve how they learn to guess how a word unknown to them would sound

in the target language (Branner 2006: 215).

In order to test the predictive force and the usefulness of prediction

studies in historical linguistics, we are currently carrying out an exper-

iment on missing words in Western Kho-Bwa language data. Western

Kho-Bwa is a branch of the Sino-Tibetan language family1, that has not

been thoroughly investigated so far. The main idea of this ongoing experi-

ment is to use a computer-assisted workflow by which missing reflexes in

an etymological dataset of eight Western Kho-Bwa language varieties are

predicted, using computational techniques which are later refined manu-

ally. These missing reflexes can then be directly tested in fieldwork, by

comparing predictions against attested reflexes.

In the following sections, we introduce reflex retrodiction as a new

explicit task of historical linguistics and point to existing automated solu-

tions (Section 2). We then present our experiment in detail, providing

information on its background, on the language varieties involved, and

1 Other terms for this language family include Tibeto-Burman and Trans-Himalayan.

But since the term Tibeto-Burman excludes the Sinitic (Chinese) branch of the family,

although the exceptional role of this branch is far less from being clearly resolved (Sagart

et al. 2019), and Trans-Himalayan is often used to emphasize a specific line of thought,

we prefer Sino-Tibetan as the most neutral term for the family.
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how we plan to evaluate the results (Section 3). Given that – at the time of

writing this paper – the experiment is still ongoing – we then provide a

succinct outlook on our expectations, by testing the performance of the

algorithm on existing Western Kho-Bwa language data (Section 4).

2 Reflex retrodiction as a new task for historical linguistics

Although prediction is rarely mentioned and mostly implicitly practised

in historical linguistics, we consider it a vital aspect of the comparative

method, and we think that a more explicit discussion of prediction tech-

niques could play a vital role for the future of our discipline. While our

linguistic knowledge derived from the techniques for historical language

comparison could be used for a wide range of predictions targeting differ-

ent linguistic domains, we think that the task of reflex retrodiction deserves

more attention in particular. Reflex retrodiction is hereby understood as

the task by which a linguist tries to predict the form of the reflex of a given

proto-form or a cognate set attested in different languages.

Linguists apply reflex retrodiction routinely when searching for thus

far unattested cognates in a specific language. Cognate sets are often spotty,

showing reflexes only in a small sample of all languages under investig-

ation, especially when initial research only considers cognate sets that

share the same meaning across all languages. Hence, the actual search for

themissing words in other regions of the lexicon can turn out to be very te-

dious and time-consuming. In order to ease this search, scholars intuitively

predict missing forms, based on known sound laws or known patterns

of sound correspondences. When asking informants or sifting through

dictionaries, they search for forms that match their guess, which drastic-

ally reduces the search space. If a form comes close to the researcher’s

prediction (including forms that are not completely identical, but similar

enough), they can directly add them to their list of attested reflexes for a

given cognate set.

In the following sections, we will quickly discuss how retroflex retro-

diction is carried out traditionally, and which automated methods have

been proposed so far. Wewill conclude by discussing the potential of more

formalized approaches to reflex retrodiction when dealing with unstudied

or understudied language families and linguistic sub-groups.

2.1 Classical approaches for reflex retrodiction

In principle, there are twobasicwayshowreflex retrodiction canbe carried

out: top-down or pattern-based. Top-down approaches start from a given
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proto-form and an ordered list of sound laws, which researchers apply

step by step, until the form in the language missing the reflex has been

derived. Applying this technique successfully requires both a very good

knowledge of the sound change processes (both the individual sound

changes as well as the diachronic order in which they occurred) of all

the languages under investigation and a reliable proto-form. Given the

complexity of sound-law-based derivations, which require a very detailed

knowledge of the sound change processes that lead to the diversification

of a given language family, top-down approaches are only applicable when

dealing with very well-attested and deeply investigated language families,

such as Indo-European.

Pattern-based approaches use knowledge of observed correspondence

patterns to fill gaps where reflexes are missing in cognate sets. There are

two basic ways in which this can be done. Firstly, one can use pairwise

sound correspondences to try to predict a word form unknown in one

language from a word form known in another language. An example for

this would be to use the German Dorf ‘village’ to predict the English coun-

terpart thorp, which nowadays is only attested in village names. The disad-

vantage of pairwise sound correspondences is that we often face complex

correspondences by which one sound in one language may have two or

more counterparts in the other language. Although phonetic conditions

can at times give us hints as to the choice of the correct sound, this is not

necessarily given in all cases, specifically also because conditions for mer-

gers or splits in sound change can easily be lost during language change.

To circumvent the problem of missing information when trying to

predict words from one language into another, one can, secondly, pre-

dict reflexes from sound correspondence patterns across multiple lan-

guages. In the linguistic literature, we often find examples of recurring

correspondences across more than one language, which are usually used

to illustrate how certain proto-sounds are reflected in the languages un-

der investigation (Clackson 2007: 37). Correspondence patterns across

multiple languages have, of course, a greater predictive force, given that

evidence lost in the majority of languages may still be present somewhere.

An example is the vocalism of Indo-European, which can barely be recon-

structed without resorting to Ancient Greek (Meier-Brügger 2002). The

disadvantage of correspondence patterns, however, is, that they are diffi-

cult to formalise. Furthermore, it is unlikely that linguists can remember

the complexity that correspondence patterns across multiple languages

can show in reality with enough detail.

Given that the distinction between pairwise and multiple language

comparison is essentially arbitrary, it is obvious that linguists pursuing
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reflex retrodiction in practise will resort to an intuitive weighting of evid-

ence. If linguists know that for a given unattested reflex a specific lan-

guage provides the clue information, such as the vowel in Indo-European,

they will naturally try to start with the language that provides the cru-

cial information. In cases where the situation is less clear, they will suc-

cessively increase the number of witnesses in order to come up with the

form that, in their opinion, best matches the evidence. It is also obvious

that intuitive correspondence-based retrodiction is very hard to formal-

ise for computational applications, given that the weightings will usually

be language-specific and that humans are very flexible in taking different

kinds of evidence into account. It would probably even be incorrect to

say that a given form predicted by a linguist has been solely arrived at by

correspondence-based retrodiction alone, given that linguists who study

a language family closely usually also have at least a rough idea about the

major sound changes that took place in the past in order to produce the

patterns we observe at present.

2.2 Automatic methods for reflex retrodiction

While the task of reflex retrodiction is not strictly divided into different

strategies and the distinction between pairwise sound correspondences

and correspondence patterns across multiple languages is usually not

made in practice, automated approaches that have been proposed so far

tend to follow one of these two major strategies. Since, as we have em-

phasised in the previous section, reflex retrodiction by means of sound

laws is usually only applicable to well-studied language families whose

history is already well-understood by experts, we will not discuss auto-

mated approaches for this task in detail here. For readers interested in

this topic, we recommend the very detailed survey on the broader task of

‘computerised forwards reconstruction’ by Sims-Williams (2018).

Although not necessarily labelled as such, automated approaches for

reflex retrodiction based on pairwise sound correspondences have been

used for quite some time. An example is the early work by Chen (1997) on

mutual dialect intelligibility, in which the author proposes an automated

measure to assess howwell speakers can understandwords from different

dialects, assuming that thesewords are, in fact, cognate. Ifwe turn this idea

around, and ask, how well speakers could predict the pronunciation of a

word, taking the potential knowledge of pairwise sound correspondences

into account, we would have a first idea to develop an automated method

for reflex retrodiction based on language pairs.
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In times of growing popularity ofmachine learning, in particular neural

network approaches, as a powerful tool for multiple different purposes,

it is not surprising that scholars have already tested the power of these

tools for the purpose of reflex retrodiction. Thus, Dekker (2018) uses the

data provided by the NorthEuralex project of Dellert & Jäger (2017) along

with methods for automated cognate detection as provided by the LingPy

software package of List, Greenhill, et al. (2018) to test the power of dif-

ferent neural network approaches and settings to handle the task of pair-

wise word prediction across different languages. The results are generally

promising, showing at times rather low differences between predicted

and attested words. A drawback is that the method does not use phonetic

transcriptions as input, but instead converts the data to the reduced sound

class system proposed by the ASJP project (Wichmann et al. 2016), the

so-called ASJP code (Brown et al. 2008), which consists of only 40 symbols

instead of the much richer inventory offered by the International Phonetic

Alphabet (IPA Handbook 1999). Thus, while very interesting as a pilot

study, the approach is less feasible for people interested in practical ap-

plications, although we hope that the author will find time in the future

to increase the flexibility of the work flow, allowing scholars to use the

method for their own work.

In contrast to the pairwise approach proposed by Dekker, List (2019)

uses sound correspondence patterns across multiple languages for the

task of reflex retrodiction. The basic goal of the algorithm proposed by

List is not to predict missing reflexes across different languages, but rather

to identify sound correspondence patterns in multilingual datasets con-

taining many ‘gappy’ or ‘patchy’ cognate sets. If cognate sets show reflexes

in only a few languages, it is often not clear which of the observed sound

correspondences, derived from phonetically aligned cognate sets, should

belong to the same correspondence pattern.

As an example, consider data from four Western Kho-Bwa varieties in

Table 1. In this example, we can easily spot two clear-cut correspondence

patterns for the initial consonant, showing exactly the same set of reflexes

in ‘push’ and ‘human being’2 and another set of reflexes in ‘know’ and

‘poison’. Based on these data only, this division is straightforward. For the

concepts ‘burn, roast’ and ‘scratch’ there are missing values for one variety

each. Based on the data provided here, we would predict the initial of

Jerigaon ‘burn, roast’ as [r] and that of Jerigaon ‘scratch’ as [d]. In the case

2 In all varieties, the word expressing this concept consists of a prefix denoting human

beings and the root.
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Concept Khispi Duhumbi Khoina Jerigaon

‘push’ d u d u r yː r yː

‘human being’ bu + d u n bu + d u n dʑ ə + r i ŋ dʑ ə + r i ŋ

‘burn, roast’ d i d i r i ː ∅

‘hearth, fireplace’ b u + d u b ɛj + d u p ∅ ∅

‘scratch’ d ɔ k d ɔ k d ɔ k ∅

‘know’ d ɛ n d ɛ n d ɛ n d ɛ n

‘poison’ d u k d u k d y k d y k

Table 1: From sound correspondence to correspondence patterns: Four words are

missing (indicated by ∅) in our data. While, on basis of the data presented here, we can

probably safely assume that the correspondence pattern for ‘burn, roast’ is the same as

that for ‘push’ and the correspondence pattern for ‘scratch’ is the same as that for ‘know’,

the case for ‘fireplace, hearth’ is ambiguous.

of ‘fireplace, hearth’,3 however, we would have a hard time guessing the

correct initial, let alone the entire segment, based on the available data,

since the correspondences of the initials could – due to the two gaps in

Khoina and Jerigaon – be assigned to both the pattern of ‘push’ and ‘human

being’, and to the pattern of ‘know’ and ‘poison’. Whenever we assign this

cognate set as a whole to one of the patterns, wemake an implicit, testable

prediction for the corresponding initial of the missing forms. In this case,

this would either be [r] or [d].

The algorithm proposed by List (2019) essentially infers correspond-

ence patterns from aligned cognate sets, by treating columns (also called

sites) in all aligned cognate sets in the data as the nodes of a network, with

edges displaying those sites which are compatiblewith each other. Bymod-

elling the data as a network, the cluster problem can then be treated as the

well-knownminimum clique cover problem in graph theory (Bhasker & Sa-

mad 1991), for which approximate solutions exist (Welsh & Powell 1967).

Given that the algorithm assigns all alignment sites in a given dataset to

unique correspondence patterns, all ‘gappy’ sites which are assigned to

a given correspondence pattern contain inherently a prediction regard-

ing the form of missing reflexes. Thus, when assigning the initial site of

the alignment from the cognate set for ‘fireplace, hearth’ to the pattern of

‘push’ in Table 1, we would predict that the reflexes for the two missing

3 In all varieties, the word expressing this concept consists of the morpheme for ‘fire’ (or

a ‘fire’-prefix) and the root.
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words should start with [r]. If we assigned it to the pattern ‘know’, we

would predict it to be [d].

The predictive force of the algorithm for sound correspondence pattern

inference was tested as part of the initial study and revealed a rather

high accuracy of automated reflex retrodictions, with accuracy scores

ranging between 50% and 80% for varying data sets. The reasons for

the difference in the accuracy scores is still not fully understood, but it

seems clear that they are not only related to the genetic diversity of the

languages under question, but also to phonotactic aspects, such as the size

of the phoneme inventories of the target languages. Despite these aspects

remaining unclear for the moment, we consider the results as interesting

enough to justify a further testing of the method.

3 A prediction experiment onWestern Kho-Bwa languages

In order to test the predictive force of the comparative method, we de-

signed a prediction experiment for hitherto unobserved words in the

Western Kho-Bwa languages. The main idea of this ongoing experiment is

to use the information provided by regular sound correspondences across

a set of eight Western Kho-Bwa varieties to retrodict pronunciations for

reflexes (words and morphemes) that have so far not yet been elicited in

field work. Once predicted and registered with the Open Science Frame-

work (https://osf.io), follow-up field work will allow us to verify the

retrodictions that were made before, thereby testing not only the cur-

rent knowledge of sound correspondences, but also the general predictive

power of the comparative method.

3.1 Background on the experiment

The starting point of this experiment was an initial etymological data set,

assembled by Bodt during fieldwork conducted in Arunachal Pradesh be-

tween 2012 and 2017. These data were initially only available in a non-

standardised form, namely a manually prepared Word table. The data set

was first converted to a spreadsheet with standardised notations. During

one week of intensive work, we then normalised the data to a level where

it could not only be automatically processed with the help of different

software tools provided by the LingPy Python package (List, Greenhill,

et al. 2018), but also sufficiently post-edited and corrected with help of

the web-based EDICTOR tool (List 2017). The initial goal was to prepare

the data to such an extent that we could annotate the data and pursue the

work flow of computer-assisted language comparison which Hill and List

https://osf.io
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developed as part of a long-term project aimed at the reconstruction of

Proto-Burmish (Hill & List 2017).

While thisworkwas on-going, List finished his article on the automated

inference of sound correspondence patterns across multiple languages,

mentioned above (List 2019). In order to evaluate the performance of

the method, he designed an experiment in which the data was split into

parts of different sizes, and the information present in the inferred cor-

respondence patterns was used to retrodict the most likely pronunciation

of word forms that were artificially deleted from the data. As mentioned

before, this experiment turned out to be surprisingly successful, reaching

accuracy levels between 50% (Burmish languages) and 80% (Polynesian

languages).

The Western Kho-Bwa etymological data set was based on initial field-

work aimed at obtaining a first understanding of the possible genetic re-

latedness of these languages. Since not all concepts were elicited for all the

varieties, there was a considerable number of missing words in the data,

ranging between 5% (Duhumbi) to 34% (Shergaon) of the words, with

an average of 22% (see Table 3.1). Given that Bodt’s data was missing po-

tentially crucial witnesses for a historical reconstruction of the subgroup,

and List just finished his draft on the algorithm that could be used as an

automated method for reflex retrodiction, it was clear that the Western

Kho-Bwa language data would be a very good test case to check both how

well the algorithm performed on the reflex retrodiction task and how well

expert predictions on word forms would perform in general. Addition-

ally, such a test would also give us a clearer picture of the power of the

comparative method and the regularity of sound change. Given that unat-

tested word prediction – be it based on human assessment or automated

methods – heavily relies on the classical assumption that sound change is

regular, the accuracy of word prediction also gives us direct insights into

the regularity of sound change within a given language family. If language

families of similar time depths differ with respect to the degree to which

they can be successfully predicted, one could explain this with different

degrees of overall sound change regularity, provoked by processes that

disguise or counteract the regularity of sound change, such as borrowing,

but also high amounts of productive word formation, as we can observe it

in many subgroups of Sino-Tibetan (List 2016b).

3.2 Background onWestern Kho-Bwa languages

In 1952, Stonor, basing himself on local sources, reported that the two

languages ‘Sulung’ or ‘Puroik’ and ‘Bugun’ are mutually intelligible (Stonor
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Variety Items Ratio

Duhumbi 632 0.95

Jerigaon 460 0.69

Khispi 526 0.79

Khoina 504 0.76

Khoitam 521 0.79

Rahung 519 0.78

Rupa 534 0.81

Shergaon 437 0.66

Total 662 0.78

Table 2: Status of data coverage in Bodt’s Western Kho-Bwa data after initial fieldwork

between 2012 and 2017.

1952). It was not until the last two decades of the 20th century that

the first linguistic materials on Bugun/Khowa, Puroik/Sulung, Sherduk-

pen and Sartang/Boot/Butpa Monpa became available: the works of the

Indian research and language officers Tayeng (Tayeng 1990) and Don-

drup (Dondrup 1988, 1990, 2004). On the Chinese side of the border, the

first Puroik data were published as part of the large-scale survey Tibeto-

Burman Phonology and Lexicon (Sūn 1991). Based on these materials and

his own field work data, Jackson Sun (Sun 1992, 1993) was the first to

suggest that Puroik, Bugun, Sherdukpen and ‘Lishpa-Butpa’ are not just a

random residue when all other major languages are subtracted, but that

they might belong together and form a coherent linguistic group.

Other researchers after him either adopted his view or independently

reached the same conclusion (Burling 2003, Rutgers 1999). van Driem

(2001) dubbed the group ‘Kho-Bwa cluster’ in his handbook Languages of

the Himalayas, by combining his provisional reconstructions for ‘water’

and ‘fire’ in the subgroup. More recent publications include the Puroik

description from China by Lı̌ (2004), the Sherdukpen description by Jac-

quesson (2015) and the elicited wordlists of different varieties in the

unpublished report by Abraham (2005). Blench & Post (2014) and Post

& Burling (2017) expressed scepticism about Puroik being part of this

proposed group of languages. Nonetheless, all commonly consulted hand-

books (Burling 2003, Genetti 2016, Post & Burling 2017) and the online

language encyclopedias Ethnologue (Lewis & Fennig 2013) and Glottolog

(Hammarström et al. 2018) mention ‘Kho-Bwa’ as a (potential) branch of

Tibeto-Burman in western Arunachal Pradesh. Although the exact phono-
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logical shape of the reconstructions kho ‘water’ and bwa ‘fire’ needs to be

established, we follow Lieberherr & Bodt (2017) and others before them

in using ‘Kho-Bwa’ as a label for these languages. Besides the fact that this

terminology is already established to some extent, it has the advantage

of not being biased toward one language like ‘Bugunish’ (Sun 1993), or a

region like ‘Kamengic’ (Blench & Post 2014, Post & Burling 2017). Further-

more, ‘Kho-Bwa’ offers an exhaustive definition of the group: Any language

of western Arunachal Pradesh in which the word for ‘water’ starts with k

and the word for ‘fire’ starts with b is a ‘Kho-Bwa’ language.

The Western Kho-Bwa languages (Bodt 2014a,b) are eight distinct

linguistic varieties spoken in the western part of the Kho-Bwa area: the

valleys of the Gongri and Tenga rivers. The languages belonging to this sub-

group are Khispi (Lishpa), Duhumbi (Chugpa), Sartang and Sherdukpen.

Sartang has four distinct speech varieties, whereas Sherdukpen has two.

The number of speakers of these linguistic varieties combined is around

8,500, and considering the low speaker population and the rapid socio-

economic and cultural changes in this area, all varietiesmust be considered

endangered.

3.3 Linguistic data on Kho-Bwa used in our study

Our linguistic data reflects eight distinct Western Kho-Bwa varieties. The

data in its current form is presented in form of a spreadsheet file that can

be directly imported by the LingPy software (http://lingpy.org, List,
Greenhill, et al. 2018); by the LingRex package (List 2018), which provides

the code for automated reflex retrodiction as presented in List (2019); and

by the EDICTOR interface (http://edictor.digling.org), a web-based

tool that allows for a quick manual correction of automated analyses (List

2017).

The basic structure of this data format is a header in the first row,

which indicates the content of the cells in each column, and one word

per language and per row. In addition to basic columns, such as a unique

identifier (ID), the name of the language variety (DOCULECT), or an elicita-

tion gloss for the concept (CONCEPT), the original data entry for the given
word (VALUE) and a semi-automatically segmented form (TOKENS), the
data contains very detailed manually corrected analyses on cognate rela-

tions (CROSSIDS), expressed in the form of partial, cross-semantic cognates

(List 2016a), morphological glosses (MORPHEMES), the prosodic structure

http://lingpy.org
http://edictor.digling.org
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of each entry (STRUCTURE), and a phonetic alignment analysis of the data

(ALIGNMENT).4

ID DOCULECT CONCEPT VALUE TOKENS MORPHEMES CROSSIDS ALIGNMENT STRUCTURE

617 Khispi burn, roast (vt) di d i BURNVT 195 d i i n
618 Duhumbi burn, roast (vt) di d i BURNVT 195 d i i n
619 Khoina burn, roast (vt) riː r iː BURNVT 195 r iː i n
621 Khoitam burn, roast (vt) riː r iː BURNVT 195 r iː i n
623 Rupa burn, roast (vt) riː r iː BURNVT 195 r iː i n

Table 3: Short example of the data and format employed in our approach.

An example for the data format employed in our approach is provided

in Table 3, where reflexes for the concept ‘burn, roast’ are given across five

varieties (with three entries missing so far). The columnwith the prosodic

structure (STRUCTURE) plays an important role in clustering the alignment

sites into correspondence patterns, since – as a rule – the algorithm will

only try to cluster those alignment columns into the same partition that

are identical with respect to their prosodic label. This also reflects the

classical practice of distinguishing between sound correspondences of the

initials and the rhymes in comparative analyses of Sino-Tibetan languages,

and South-East-Asian languages in general.

Our format comes very close to the specifications required by the Cross-

Linguistic Data Formats initiative (https://cldf.clld.org, Forkel et
al. 2018), which seeks to increase the overall comparability of linguistic

data by encouraging scholars to adhere to general standards by linking

their data to reference catalogues, such as Glottolog for languages (Ham-

marström et al. 2018), Conception for concepts (List et al. 2016), and

the transcription system advocated by the Cross-Linguistic Transcription

Systems initiative (CLTS, https://clts.clld.org, Anderson et al. forth-

coming).

When registering the experiment, our data was still missing the links

to the Concepticon and the CLTS transcription system, but in the mean-

time, we have prepared the data in CLDF format, and it can be found on

GitHub (https://github.com/lexibank/bodtkhobwa) and Zenodo (Ver-

sion 1.0.1, https://zenodo.org/record/2632545).

4 Compare List, Walworth, et al. (2018) for more information on the tabular format

employed by LingPy and related tools.

https://cldf.clld.org
https://clts.clld.org
https://github.com/lexibank/bodtkhobwa
https://zenodo.org/record/2632545
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3.4 Computer-assisted reflex retrodiction

Our computer-assistedworkflow forword prediction consists of two parts,

an automated and a manual task. In the automated task, we employ the

automated correspondence pattern recognition method by List (2019) in

order to predict the missing words in the data. The result of this analysis

is a table of morphemes as predicted by the algorithm. These come in

three variants, as shown in Table 4. The difference between these three

variants is that they display different degrees of uncertainty. At times, an

alignment site could be assigned to different correspondence patterns, as

we have seen for the concept ‘hearth, fireplace’ in our example in Table

1. If we have to decide between two or more correspondence patterns,

the algorithm orders these patterns in decreasing order of alignment sites

supporting a given pattern. The variant shown asWord1 in the table only

picks the first value for a given language, whileWord2 picks the first two

values (if more than one are found), and displays them in a single segment

slot, separated by a pipe (|) symbol. If no correspondence pattern can

be found for a given alignment site (which may happen if the sites do not

occur regularly in the data) the algorithm displays this by using Ø, as our
symbol formissing data. That a certain prediction suffers fromuncertainty

in one of the alignment sites is further displayed in the Column Qu. by a

question mark.

Hence, in Table 4, we see predictions for the same three concepts with

missing values in Table 1: ‘burn, roast’, ‘scratch’ and ‘fireplace, hearth’. As

we predicted earlier, the ’best fit’ for the initial for the concept ‘burn, roast’

in Jerigaon is indeed an [r], and the ’best fit’ for the concept ‘scratch’ in

Jerigaon is indeed a [d]. The automatic analysis already comes up with

predictions for the initial for the concept ‘fireplace, hearth’ in Khoina and

Jerigaon because, unlike the data presented in Table 1, the concept actually

has attested reflexes in Khoitam, Rahung, Rupa and Shergaon on basis

of which the reflexes can be assigned to the correspondence set ‘push’,

rather than to the correspondence set ‘know’. That the concept ‘fireplace,

hearth’ nonetheless has a question mark in the Column Qu. is because the

algorithm cannot assign a value to the alignment sites of the rhymes (i.e.

the nucleus in the case of the prefix and the coda in case of the root) of the

predicted word.

Given that our algorithm predicts all missing words mechanically re-

gardless of whether this makes sense in terms of lexical considerations, it

is clear that the selection of items to be explicitly elicited does not need

to contain all items for which predictions could be made. The automated
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No. Qu. Cogn. Language Concept Morpheme Word1 Word2 Word3

361 195 Jerigaon burn, roast (vt) BURNVT r iː r|tʰ iː r|tʰ iː

362 195 Rahung burn, roast (vt) BURNVT r iː r iː r iː

363 195 Shergaon burn, roast (vt) BURNVT r iː r|t iː|i r|t iː|i

465 251 Jerigaon scratch SCRATCH d ɔ k d ɔ|a k|- d ɔ|a|u k|-

466 251 Khoitam scratch SCRATCH d ɔ k d|dʑ ɔ|a k|- d|dʑ ɔ|a|yː k|-

467 251 Rahung scratch SCRATCH d ɔ k d|dʑ ɔ|øː k|- d|dʑ ɔ|øː k|-

1020 ? 515 Jerigaon hearth, fireplace hearthfireplace b Ø - b Ø - b Ø -

1021 ? 515 Khoina hearth, fireplace hearthfireplace b Ø - b Ø - b Ø -

1022 ? 516 Jerigaon hearth, fireplace hearthfireplace r ɛ Ø r|tʰ ɛ Ø r|tʰ ɛ Ø

1023 ? 516 Khoina hearth, fireplace hearthfireplace r ø Ø r ø Ø r ø Ø

Table 4: Example output format of our automated reflex retrodiction experiment.

transcriptions provided in the supplementary material5 may thus contain

predictions that we already know are unlikely to exist. This may be due to

lexical innovations, borrowings, or because no concepts exist for a given

elicitation gloss. For this reason, Bodt made amanual analysis, extracting

those predictions that on basis of his experience would be most promising

and interesting. This list comprises a list of 630 detailed predictions (in-

cluding full words with prefix andmain root), as well as an informed guess

by Bodt that at times overrides the automated prediction, especially in

those cases, where the automated prediction would only predict a suffix

instead of a full word form, or where the automated prediction could not

be resolved fully from the data fed to the algorithm. Essentially, this al-

lows us to compare two different kinds of predictions: the fully automated

ones, and the ones corrected by the expert, which is also shared in the

supplementary material.6

So, to continue with the example in Table 4 above, the manually adjus-

ted prediction for the concept ‘fireplace, hearth’ in Khoina ([br ɔ p]) and

Jerigaon ([br ɔ p]) is based on the evidence from the other Sartang and

Sherdukpen varieties, including contraction of the fire-prefix to the root.

3.5 Status and time line of the experiment

Asmentioned before, the initial fieldworkwas carried out by Bodt between

2012 and 2017, with the major part of the data on the Western Kho-Bwa

varieties collected in 2014. A first overview of the results, including a

5 File <predictions-automatic.tsv> in our registration, direct link on GitHub: https:
//github.com/lingpy/predict-khobwa/blob/v1.0.1/predictions-automatic.
tsv.
6 The corrected data was provided as file <predictions-manual.tsv> in our registra-

tion, direct link on GitHub: https://github.com/lingpy/predict-khobwa/blob/v1.
0.1/predictions-manual.tsv.

https://github.com/lingpy/predict-khobwa/blob/v1.0.1/predictions-automatic.tsv
https://github.com/lingpy/predict-khobwa/blob/v1.0.1/predictions-automatic.tsv
https://github.com/lingpy/predict-khobwa/blob/v1.0.1/predictions-automatic.tsv
https://github.com/lingpy/predict-khobwa/blob/v1.0.1/predictions-manual.tsv
https://github.com/lingpy/predict-khobwa/blob/v1.0.1/predictions-manual.tsv
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Word table with provisional proto-forms and the underlying sound cor-

respondences, was presented at the South East Asian Linguistic Seminar

in Padang, Indonesia, in May 2017. In June 2018, the spreadsheet was

sufficiently enhanced by converting it into formats that can be computa-

tionally processed. On August 20, 2018, List carried out the experiment on

automated word prediction. On October 3, 2018, Bodt used the automated

predictions to come up with a list of sensible manual predictions to be

checked during his follow-up field work. This list contained 630 different

word forms in total, and about 65 words on average per variety.7

On October 5, 2018, List registered the experiment, including both the

code, the data, and the automatically and the manually corrected reflex

retrodictions with the Open Science Framework (https://osf.io) at
https://osf.io/evcbp/. Thebasic idea of registering an experiment is to

deposit a hypothesis prior to testing itwith someprovider, in order tomake

sure that the hypothesis was not created after the scholars inspected data

and results. In the case of our word prediction experiment, the hypothesis

consists of the 630 predictions we have come up with. That means, we

do not provide a single hypothesis to be tested, but a rather long list of

predictions that can all be tested individually. The field work to check

the reflex retrodictions against the real word forms was carried out in

October and November 2018. We are now in the process of comparing

the accuracy of the word predictions and share our results in form of a

publication and talks starting with the International Historical Linguistics

Meeting in Canberra 2019.

3.6 Future evaluation of the experiment

Evaluating the accuracy of word predictions can be done in a very straight-

forward way by comparing the predicted word form with the attested

word form segment by segment. A metric would then score all those

cases in which a predicted segment differs from an attested one, and yield

the average accuracy of a predicted word by dividing the number of cor-

rectly predicted sound segments by the number of incorrectly predicted

sound segments. This procedure is already implemented in the LingRex

software we used for this study, and likewise described and illustrated

in List (2019). Thus, the reflex retrodiction task on controlled data sets

can be easily automated and tested in those cases where data is artificially

7 Given that the degree by which varieties were missing data was skewed, there was a

high variation as to howmany word forms were actually predicted per variety

https://osf.io
https://osf.io/evcbp/
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distorted and we know in advance that each missing word indeed has a

counterpart in a cognate set of the given language.

When working with real-language data, and words that are really un-

attested at the time of the prediction, however, it is also possible that the

predicted word does not exist in the target language, but has been lost

due to lexical replacement. As a result, any metric that wants to judge the

accuracy of a prediction experiment as we have conducted it on Western

Kho-Bwa language data needs to assess first if the words that are attested

for a given semantic slot are indeed cognate with the cognate set which

was used in order to predict the unknown word form. If it turns out that

the word is indeed not cognate with the words used for the prediction, this

should not count as a failure of the method, but should instead be ignored

when comparing the accuracy of the prediction experiment.

We are currently still discussing and evaluating the most useful met-

rics for evaluating the accuracy of both the automated and the manually

corrected predictions. Ideally, we would have addressed this problem

even before registering the experiment. However, as we consider our re-

search as a pilot study on the task of reflex retrodiction, we hope that our

colleagues will understand that we were not able to predict completely

how this could be carried out in an optimal manner.

4 Testing automated predictions onWestern Kho-Bwa

Before conducting an experiment of this kind, it is useful to compute the

rate of accuracywemight expect from a random sampling of the data alone.

For this purpose, we randomly deleted words from the existing data and

then used the distorted data set to predict the deletedwords. The accuracy

is then computed for each word form by counting how many times the

algorithm proposes the correct word form and how many times it fails.

This can be represented in a percentages score, our accuracy score. After

100 trials, documented in the supplementary material, the accuracy of the

prediction experiment on the data reached 59% (0.5854), with an average

proportion of 61% of the data being retained. Comparing this score with

other data sets, as reported in List (2019), we can see that theWesternKho-

Bwa language varieties are less easy to predict than Polynesian languages

or Chinese dialects, but rather seem to be as challenging as the Burmish

languages in the sample of Hill & List (2017). The fact that the prediction

did not reach higher scores may also result from the fact that the original

data is already sparse with respect to mutual coverage.
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5 Conclusion

With languages disappearing at rates never experienced before, reflex

retrodiction could become more and more important as a practical tool

for historically oriented linguistic fieldwork. As the speakers of these

languages are becoming fewer in number and older, there is a genuine

risk that words that are important from a historical-comparative view

point may be lost before they are recorded. Retrodicting these words

may help to render the search for cognate forms in these languages less

time-consuming and more efficient. For example, rather than having to

ask how to say ‘to carry by hand’, ‘to carry on the shoulder’, or ‘to carry

on the back’ in a given language, one could directly retrodict the missing

forms and ask whether they exist in the target language, and if they exist,

one could further ask for their exact semantic interpretation. Additionally,

reflex retrodiction will make it easier to elicit cognates of certain words

that contain rare segments in a given variety, such as marginally occurring

distinctive onsets or rhymes. These actually attested forms can then be

used to strengthen purported sound correspondences between linguistic

varieties and reconstruct proto-forms.

In this paper, we have described an initial attempt to test how reflex

retrodiction could be used in actual field work. Our experiment proposes

a first workflow that illustrates how similar experiments could be carried

out by colleagues working on other language families. There is no need to

follow our workflow completely: scholars could just use their intuition

before going back to the field to make lists of forms they think they should

check again, which may already be a regular – though largely unreported –

practice among field linguists. By sharing these predictions with the pub-

lic through registering experiments with the Open Science Framework,

scholars can not only share their current state of knowledge with the

community, but also test it against the data they observe. Ideally, this can

help to strengthen specific hypotheses, and it can also help to increase the

awareness that sound change is – in reality – to a large extent proceeding

along regular pathways. That this seems to be the case has already been

shown in the original study on sound correspondence patterns by List

(2019), upon which our automated prediction procedure is based. Here,

the automated predictions reached results ranging from 53% to 82% in

prediction accuracy when only half of the data was considered. However,

given that we expect human prediction to exceed the accuracy of our auto-

mated predictions, it would be very interesting not only for linguists but

also for other scientific fields and a greater public, if linguists around the

world tested and reported their predictions during their fieldwork. Saying
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that sound change is more or less regular is one thing, but demonstrating

that it allows us to guess the pronunciation of words with an amazingly

high accuracy, adds practical proof to our otherwise theoretical and formal

discipline.

Readers may ask themselves why we report this experiment here in a

stage where the major work of checking how well the reflex retrodiction

works in the end has not yet been carried out. We decided to report this

study already at this stage, since we hope to get some feedback from

our colleagues. We are not only interested to receive suggestions for

enhancement of our current study, but wewould also like to hear how field

workers dealing with historical language comparison of hitherto poorly

investigated languages are making or have made use of reflex retrodiction.
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