
Papers in Historical Phonology	

http://journals.ed.ac.uk/pihph
ISSN 2399-6714

Volume 3, 137–157 (2018)
DOI: 10.2218/pihph.3.2018.2878

	

Licensed	under	a	
Creative	

Commons	4.0	
International	

License

Machine	learning	in	diachronic	corpus	phonology:	
mining	verse	data	to	infer	trajectories	in	English	

phonotactics		

ANDREAS	BAUMANN	
University	of	Vienna	

Abstract	

Machine	 learning	 is	 a	 powerful	method	when	working	with	 large	 data	
sets	 such	 as	 diachronic	 corpora.	 However,	 as	 opposed	 to	 standard	
techniques	 from	inferential	statistics	 like	regression	modeling,	machine	
learning	 is	 less	 commonly	 used	 among	 phonological	 corpus	 linguists.	
This	 paper	 discusses	 three	 different	 machine	 learning	 techniques	 (K	
nearest	 neighbors	 classifiers;	 Naïve	 Bayes	 classifiers;	 artificial	 neural	
networks)	 and	 how	 they	 can	 be	 applied	 to	 diachronic	 corpus	 data	 to	
address	specific	phonological	questions.	To	illustrate	the	methodology,	I	
investigate	 Middle	 English	 schwa	 deletion	 and	 when	 and	 how	 it	
potentially	triggered	reduction	of	final	/mb/	clusters	in	English.	

	

1 Introduction	
In	 this	 methodological	 paper,	 I	 demonstrate	 how	 machine	 learning	
techniques	can	be	used	to	generate	more	nuanced	data	for	research	in	
diachronic	 corpus	 phonology.	 This	 is	 motivated	 by	 the	 following	
problem.	 In	 the	 diachronic	 study	 of	 English,	 the	 phenomenon	 of	 final	
schwa	deletion	is	complicated:	it	is	gradual	(as	most	linguistic	changes	
are);	 spelling	does	not	provide	reliable	cues	 for	phonological	analyses	
(and	 there	 is	no	audio	data	available	 for	most	periods	 to	begin	with);	
and	it	depends	on	many	factors	(e.g.	phonological	context,	word	length,	
morphosyntax,	not	to	mention	socio-geography;	Minkova	1991).	

However,	 for	 an	 English	 historical	 phonologist	 it	 is	 important	 to	
know	if	final	schwa	is	present	in	a	given	period:	(i)	in	metrical	theory	it	
is	 relevant	 for	 investigating	 stress	 clashes	 or	 numbers	 of	 syllables	
(Burzio	2007,	Dresher	&	Lahiri	2005);	 (ii)	 in	cognitive	phonology	one	
may	 be	 interested	 in	 diphones	 which	 function	 as	 cues	 for	 word	
segmentation	 (Dressler,	Dziubalska-Kołaczyk	&	Pestal	2010,	Daland	&	
Pierrehumbert	2011);	(iii)	in	phonotactics	we	want	to	be	certain	about	

Andreas	Baumann	 	 138	

syllable	 structure	 (Hogg	&	McCully	 1987,	 Dziubalska-Kołaczyk	 2005),	
for	instance	if	there	is	a	coda	cluster	like	/mb/	in	Middle	English	items	
like	lambe	or	if	/b/	is	in	fact	the	onset	of	a	final	syllable	/bə/.	

To	 address	 questions	 like	 these	 in	 a	 statistically	 robust	 way,	 we	
need	 lots	 of	 data.	 Unfortunately,	most	 of	 the	 data	 available	 are	 prose	
data,	which	are	rarely	phonologically	annotated	(but	see	Kopaczyk	et	al.	
2018	 for	 a	 major	 step	 towards	 phonological	 parsing	 in	 historical	
corpora).	 Verse	 data	 are	 arguably	 more	 suitable	 for	 studying	
phenomena	 like	 schwa	 deletion	 (because	 we	 can	 use	 rhythm	 as	 a	
diagnostic	 tool),	 but	 especially	 if	 we	 want	 to	 do	 long	 term	 studies	
involving	many	centuries,	poetry	data	are	sparse.	

This	discrepancy	leads	to	the	following	idea:	it	would	be	great	if	we	
could	 exploit	 (‘mine’)	 poetry	 data,	 which	 are	 relatively	 reliable	 with	
respect	 to	 the	phonological	 interpretation	of	 final	schwas,	and	use	the	
information	gained	in	this	way	to	analyze	large	amounts	of	prose	data.	

Machine	learning	(ML)	can	be	used	to	do	exactly	this.	ML	algorithms	
can	be	trained	on	some	well-analyzed	data;	in	a	second	step	the	trained	
models	can	be	used	to	make	predictions	about	new	data	that	is	not	yet	
fully	analyzed.	The	predicted	data,	finally,	can	be	used	for	some	further	
analysis	 of	 the	phenomenon	one	 is	 actually	 interested	 in.	 In	 this	way,	
ML	techniques	provide	the	researcher	with	more	nuanced	data.	

Of	course,	this	procedure	is	well	known	in	corpus	linguistics.	ML	is	
used	to	do	lemmatization,	morphosyntactic	analyses	(e.g.	PoS	tagging),		
phonological	 and	 phonetic	 annotation,	 or	 translation	 (Manning	 2015,	
Pustejovsky	 &	 Stubbs	 2013,	 Baron	 &	 Rayson	 2009;	 see	 also	 Ellison	
1994).	 However,	 these	 methods	 are	 usually	 applied	 by	 expert	
computational	 linguists	 and	more	user-friendly	 tools	 like	open-source	
taggers	 (e.g.	 AntCLAWSGUI,	 Anthony	 2013)	 or	 spelling	 standardizers	
(e.g.	 VARD,	 Baron	 &	 Rayson	 2008)	 are	 typically	 restricted	 to	 specific	
applications	and/or	historical	periods.	

	The	primary	goal	of	this	paper	is	to	show	that	customized	ML	models	
can	 be	 computed	 by	 any	 researcher	 in	 diachronic	 linguistics	 who	 is	
familiar	with	basic	 techniques	 in	 inferential	statistics.	To	do	so,	 I	discuss	
three	well-known	ML	 techniques:	K	nearest	neighbors	 classifiers	 (KNN),	
Naïve	Bayes	classifiers	(NB),	and	artificial	neural	networks	(ANN)	(section	
2).	I	train	them	on	previously	analyzed	verse	data.	The	trained	models	are	
then	 applied	 to	 prose	 data	 which	 are	 not	 phonologically	 analyzed.	 To	
illustrate	the	use	of	the	procedure,	I	finally	infer	diachronic	trajectories	of	
Middle	English	/mb/	clusters	and	discuss	what	can	be	learned	about	the	
onset	of	final	/b/	deletion	in	words	like	lamb	or	thumb	(section	3).		

In	terms	of	computational	software,	 I	rely	on	a	couple	of	easy-to-use	
packages	and	functions	in	R	(Team	&	R	Development	Core	Team	2017).	All	
code	and	data	used	in	this	paper	are	made	available	as	associated	material.	

139	 Machine	learning	in	diachronic	corpus	phonology	

2 Learning	schwa	loss:	model	training	and	optimization	
The	 general	 idea	 behind	 supervised	 machine	 learning	 techniques	 is	
this:	 in	 a	 first	 step,	 a	ML	model	 is	 trained	 on	 a	 dataset.	 This	 training	
dataset	is	complete	in	the	sense	that	every	single	data	point	represents	
a	 set	of	 input	values	 together	with	an	output	value.	Depending	on	 the	
algorithm	that	underlies	the	ML	technique,	this	dataset	is	used	to	learn	
which	output	values	belong	to	which	constellation	of	input	values.	The	
result	of	this	learning	procedure	is	a	model	(very	much	like	a	regression	
model	 fitted	 to	 a	 set	 of	 data	 points).	 After	 evaluating	 and	 perhaps	
refining	 the	 model,	 it	 can	 be	 used	 to	 predict	 output	 values	 for	 any	
(potentially	 new)	 constellation	 of	 input	 values.	 In	what	 follows,	 I	will	
discuss	 the	 training	 data	 used	 for	 this	 study	 and,	 after	 that,	 three	
different	ML	 techniques:	 K	 nearest	 neighbors	 classifiers	 (KNN),	Naïve	
Bayes	classifiers	(NB)	and	artificial	neural	networks	(ANN).		

2.1 Data	
The	goal	of	this	study	is	to	predict	if	a	graphemically	represented	word-
final	 schwa	 found	 in	 some	 historical	 (English)	 corpus	 was	
phonologically	realized	or	in	fact	empty.	Since	written	prose	data	do	not	
give	reliable	cues	as	to	how	a	word	final	<e>	should	be	phonologically	
interpreted,	I	use	corpus	data	which	are	phonologically	more	reliable	in	
this	regard,	namely	verse	data.	The	dataset	which	I	use	as	training	data	
was	 originally	 compiled	 by	 Christina	 Prömer	 (Baumann	 &	 Prömer	
2017)	 and	 is	 discussed	 in	more	detail	 in	Baumann,	 Prömer	&	Ritt	 (in	
review).1	In	a	nutshell,	 it	consists	of	626	lexical	word	tokens	ending	in	
<e>	 retrieved	 from	 poems	 distributed	 over	 the	 Middle	 and	 Early	
Modern	English	Period	(roughly	1150	to	1700).	Based	on	the	rhythmic	
context,	 each	 word	 token	 was	 manually	 labeled	 as	 to	 whether	 it	
contains	a	phonologically	present	final	schwa	(schwa	present	‘Y’;	schwa	
absent	 ‘N’).	 The	 latter	 represents	 the	 output	 variable	 in	 our	 training	
data.	The	dataset	 features	several	potentially	 relevant	 input	variables:	
(i)	time	(centuries	numbered	from	1	to	7,	where	1	means	12th	century	
and	7	means	18th	century);	 (ii)	 length	(approximated	by	counting	the	
number	 of	 graphemes2);	 (iii)	 subsequent	 phonological	 context	 (vowel	
‘1’;	 consonant	 ‘0’);	 and	 (iv)	 morphology	 (word	 ends	 in	 a	 suffix,	 e.g.	
plural	<s(e)>:	yes	‘1’	or	no	‘0’).	Note	that	all	input	variables	are	numeric	
or	 transformed	 into	 numeric	 dummy	 variables	 (which	 can	 be	 easily	

1	The	data	used	in	this	study	can	be	found	in	the	associated	materials.	
2	This	approximation	is	necessary	since	diachronic	corpora	are	rarely	phonologically	
annotated.	

Andreas	Baumann	 	 140	

done,	 also	 for	 many-valued	 nominal	 variables	 like	 ‘PoS’),	 while	 the	
output	variable	is	categorical.			

Before	 we	 can	 train	 our	 models,	 we	 must	 do	 some	 more	 work.	
Since	two	of	the	ML	algorithms	discussed	here	work	better	if	all	input	
variables	 operate	 on	 the	 same	 scale	 (KNN	 and	 ANN)3	 all	 variables	
were	 normalized	 to	 assume	 values	 between	 0	 and	 1.4	 For	 example,	
time,	which	goes	from	1	to	7	and	denotes	a	century	a	given	text	comes	
from,	has	been	scaled	down	to	values	between	0	and	1,	where	0	means	
12th	 century	 and	 1	means	 18th	 century.	 After	 that,	 the	 dataset	was	
divided	randomly	into	two	parts,	one	for	training	the	models	and	one	
for	 evaluating	 them	 (i.e.	 checking	 if	 the	predictions	of	 the	model	 are	
correct).	This	is	necessary	as	it	does	not	make	much	sense	to	test	the	
model	 against	 the	 data	 it	 was	 trained	 on	 beforehand.	 There	 are	
different	 suggestions	 concerning	 the	 proportions	 of	 data	 points	 that	
should	be	used	for	training	and	testing	the	model.	For	small	data	sets,	
attributing	2/3	of	the	data	to	training	and	1/3	to	testing	the	model	is	a	
widely	adopted	procedure	(cf.	Kohavi	2005).5	Large	training	sets	lead	
to	 more	 precise	 model	 parameter	 estimates	 while	 large	 testing	 sets	
entail	 more	 reliable	 model	 evaluation	 measures.	 Clearly,	 both	 are	
relevant.			

2.2 ML	algorithms:	training	and	classification	
In	 this	 section	 I	 discuss	 three	 prominent	 ML	 techniques.	 In	 each	
subsection,	I	first	describe	the	rationale	which	underlies	the	respective	
learning	 algorithm	 and	 the	 way	 in	 which	 it	 classifies	 unlabeled	 data	
points.	 After	 addressing	 the	 corresponding	 R	 functions,	 I	 briefly	
elaborate	on	the	advantages	and	drawbacks	of	the	learning	algorithms,	
focusing	on	applications	in	diachronic	corpus	linguistics.		

2.2.1 K	nearest	neighbors	classifier	(KNN)	
Let	 us	 begin	with	 one	 of	 the	most	 basic	ML	 techniques,	 the	 K	 nearest	
neighbors	classifier	(KNN;	cf.	Zaki	&	Meira	2014),	 first	proposed	by	Fix	

3	This	is	because	KNN	measures	(usually	Euclidian)	distances	between	data	points,	so	
that	 large	discrepancies	between	scales	would	result	 in	variables	operating	on	small	
scales	 (e.g.	 the	 interval	 from	0	 to	1)	being	overshadowed	by	variables	measured	on	
large	 scales	 (e.g.	 dates	 from	1100	 to	1700).	ANN,	 on	 the	other	hand	 sometimes	use	
activation	functions	which	are	sensitive	to	differential	scaling.	See	section	2.2.	
4	This	was	done	by	employing	the	normalization	𝑥" →

$%&'()𝒙
'+,𝒙&'()𝒙

.	
5	 In	 general,	 larger	 datasets	 allow	 for	 smaller	 proportions	 reserved	 for	 testing	 the	
model.	 For	 instance,	 if	 100,000	 data	 points	 are	 available	 it	 is	 sufficient	 to	 attribute	
about	1	to	5%	to	testing	the	model.	

141	 Machine	learning	in	diachronic	corpus	phonology	

and	 Hodges	 (1952).	 The	 idea	 behind	 the	 algorithm	 is	 very	 simple.	 It	
classifies	data	points	based	on	properties	of	their	neighbors.	Every	data	
point	can	be	conceptualized	as	a	point	in	a	d-dimensional	space,	where	d	
is	the	number	of	input	variables.	In	the	present	case,	for	instance,	𝑑 = 4.	
The	 coordinates	 of	 each	 point	 in	 this	 space	 are	 given	 by	 its	 set	 of	
variable	 values.	 Figure	 1a	 illustrates	 this	 for	 two	 dimensions	 (length	
and	time).	If	the	output	variable	is	binary	(as	in	our	example	Y/N)	there	
are	 two	 categories	 of	 data	 points	 (you	 can	 think	 of	 them	 as	 having	
different	colors	like	light	and	dark	magenta	in	Figure	1a).	

How	do	we	identify	the	category	(i.e.	output	value)	of	a	new	and	yet	
unclassified	data	point,	like	the	gray	square	in	Figure	1a?	To	arrive	at	a	
label,	KNN	simply	looks	at	those	K	data	points	which	are	closest	to	the	
new	 point,	 i.e.	 the	 K-neighborhood	 (hence,	 ‘K	 nearest	 neighbors’),	
represented	 by	 the	 circle	 in	 Figure	 1a.	 Here,	K	 can	 be	 any	 previously	
defined	number,	e.g.	𝐾 = 3.6	Then,	the	K-neighborhood	consists	of	those	
three	points	 closest	 to	 the	new	point.7	Afterwards,	KNN	computes	 the	
distribution	 of	 output	 values	 in	 the	K-neighborhood.	 This	 is	 done,	 for	
instance,	 by	 simply	 counting	 the	 number	 of	 light	 and	 dark	 magenta	
points	 in	 the	 circle	 describing	 the	K-neighborhood.	 The	 one	 category	
with	the	most	representatives	in	the	K-neighborhood	wins	and	assigns	
its	value	 to	 the	new	data	point	 (for	 that	reason,	 it	 is	good	to	select	an	
odd	value	for	K	to	avoid	ties	in	the	case	of	binary	output	variables).		

6	The	optimal	value	for	K	depends	on	the	given	data	set	and	it	can	be	determined	by	
assessing	 model	 accuracy	 for	 different	 K	 values	 (see	 section	 2.3	 for	 details	 on	
accuracy).	
7	 In	 the	 case	 of	 ties	 for	 the	 Kth	 nearest	 data	 point,	 all	 equidistant	 points	 are	
considered.	 Another	 viable	 option	would	 be	 to	 randomly	 draw	 a	 single	Kth	 nearest	
point	among	all	equidistant	candidates.		

Andreas	Baumann	 	 142	

	
	

Figure	1:	Model	visualization:	(a)	KNN	procedure	of	classifying	an	as	yet	unlabeled	
point	(gray	square)	in	the	time×length	plane	(magenta	circles:	schwa	absent;	dark	

magenta	triangles:	schwa	present;	points	jittered	for	better	visibility).	Morphology	and	
right	context	are	not	represented.	(b)	NB	probabilities	of	input	variables	given	present	
(solid,	dark	cyan)	and	absent	schwa	(dashed,	light	cyan),	respectively.	(c)	ANN:	input	
nodes	(I1	to	I3),	hidden	nodes	(H1	to	H4),	and	an	output	node	(schwa	present,	O1).	B1	
and	B2	define	additive	bias	terms.	Solid	dark	orange	lines	represent	positive	weights	
while	dashed	light	orange	lines	represent	negative	weights	between	nodes.	Thickness	
corresponds	to	weight	size.	Upper	right	corner:	decision	function	of	output	node.	

143	 Machine	learning	in	diachronic	corpus	phonology	

In	 Figure	 1a,	 the	 gray	 point	 gets	 the	 dark	 magenta	 label	 ‘Y’,	 i.e.	
schwa	 is	 present.	 The	 procedure	 is	 repeated	 for	 all	 unclassified	 data	
points.		

In	 R,	 KNN	 predictions	 can	 be	 computed	 with,	 for	 example,	 the	
knn()	 function	from	the	class	package	(Venables	&	Ripley	2002).	It	
takes	 a	data	 set	 of	 input	 values	 and	 a	 corresponding	 vector	 of	 output	
values,	as	well	as	a	data	set	of	unlabeled	input	values	as	arguments,	and	
returns	a	vector	of	predicted	output	categories.	The	code	can	be	found	
in	the	associated	script	(see	the	‘associated	material’	section	at	the	end	
of	this	paper).	

In	general,	KNN	is	a	very	simple	and	non-parametric	algorithm	(i.e.	
it	 does	 not	 have	 any	 distributional	 requirements)	 with	 moderate	
accuracy	(cf.	Kotsiantis	2007,	Table	4).	Its	drawbacks	are	low	speed	of	
classification	(which	 is	certainly	not	an	 issue	 if	working	on	small	data	
sets,	but	potentially	problematic	 in	 the	case	of	 large	corpora)	and	 low	
tolerance	of	missing	values	(Guo	et	al.	2003,	Kotsiantis	2007).	Since	the	
definition	 of	 the	 K-neighborhood	 depends	 on	 a	 distance	 measure	
(usually	Euclidian	distance)	it	is	sensitive	to	differences	between	scales	
of	the	input	variables	(Ripley	1996,	192)	so	that	scale	normalization	is	
recommended.	 This	 is	 particularly	 important	 in	 diachronic	 linguistics	
where	 time	 is	 usually	 measured	 in	 years,	 decades	 or	 centuries	 (see	
section	2.1).		

2.2.2 Naïve	Bayes	classifier	(NB)	
The	Naïve	Bayes	classifier	(NB)	adopts	an	approach	which	is,	as	it	were,	
methodologically	orthogonal	to	that	of	the	KNN	algorithm.	Rather	than	
inspecting	 the	 close	 neighborhood	 of	 a	 data	 point	 and	 thereby	
capturing	all	properties	(input	values)	of	nearby	data	points	at	once,	NB	
estimates	 global	 distributions	 of	 each	 input	 variable	 separately	 and	
combines	them	to	arrive	at	a	prediction	for	a	given	set	of	 input	values	
(Zaki	&	Meira	2014,	Hand	&	Yu	2001).	

Most	fundamentally,	the	algorithm	makes	use	of	Bayes’	theorem	to	
determine	the	(so-called	posterior)	probability	of	a	data	point	𝑥	(given	
by	 a	 set	 of	 d	 input	 values)	 having	 class	 𝑐" ,	 in	 short	 𝑃(𝑐"|𝑥).	 If	 this	
probability	 is	 known,	 one	 can	 simply	 choose	 the	 one	 class	 with	 the	
highest	probability.	Bayes’	theorem	states	that	this	probability	depends	
on	the	probability	of	a	class	𝑐" 	having	a	certain	value	𝑥	in	the	following	
way:	 𝑃 𝑐" 𝑥 = 𝑃 𝑐" 𝑃 𝑥 𝑐" /𝑃(𝑥).	 The	 first	 factor	 can	 be	 easily	
determined,	given	a	set	of	training	output	values,	and	we	can	ignore	the	
denominator	if	we	are	only	interested	in	finding	the	category	𝑐" 	yielding	
the	maximal	posterior	probability.	The	conditional	probability	𝑃(𝑥|𝑐"),	
however,	is	more	complicated.	The	trick	behind	the	NB	algorithm	is	that	

Andreas	Baumann	 	 144	

it	naively	pretends	 that	all	 input	variables	are	 independent	 from	each	
other.	As	a	mathematical	consequence	of	this,	the	latter	probability	can	
be	written	as	the	product	𝑃 𝑥 𝑐" = 𝑃 𝑥8 𝑐" ∙ 𝑃 𝑥: 𝑐" ⋯𝑃 𝑥< 𝑐" .	From	
a	 computational	 point	 of	 view,	 it	 is	 not	 difficult	 to	 estimate	 the	
distributional	 properties	 of	 each	 of	 these	 factors	 separately	 given	 the	
training	data.		

Estimated	(Gaussian)	density	distributions	for	the	present	training	
data	 are	 shown	 in	 Figure	 1b.	 In	 each	 plot,	𝑥= 	 (the	 input	 variable,	 e.g.	
time)	is	measured	on	the	horizontal	axis	and	density	is	measured	on	the	
vertical	 axis	 (that	 is,	 each	 curve	 can	 be	 read	 like	 a	 very	 fine-grained	
histogram	with	a	 total	area	of	1).	For	each	 input	dimension	 (i.e.	 input	
variable),	there	are	two	curves,	one	for	the	output	value	‘schwa	present’	
and	one	 for	 the	value	 ‘schwa	absent’.	 For	 example,	 the	distribution	of	
present	 schwas	with	 respect	 to	 time	 is	 concentrated	on	 the	 left	 (most	
present	schwas	occur	early),	while	absent	schwas	are	concentrated	on	
the	right	(in	late	periods	schwa	is	lost).	Given	a	new	data	point,	say	𝑥 =
(𝑥8 = 1, 𝑥: = 0.56, 𝑥D = 0.44, 𝑥E = 0),	 these	 curves	 are	 then	 used	with	
the	 above	 formulas	 to	 determine	 the	 overall	 posterior	 probability	 for	
both	 categories	 (schwa	 absent/present).	 The	 category	 which	 scores	
higher	wins	and	is	assigned	to	x.	

NB	 models	 can	 be	 conveniently	 computed	 in	 R	 with	 the	
NaiveBayes()	function	from	the	klaR	package.	It	draws	on	the	same	
syntax	 that	 is	 known	 from	more	 basic	 statistical	 techniques,	 such	 as	
linear	 regression	 models	 (e.g.	 lm()).	 That	 is,	 the	 function	 defines	 a	
model	object	which	can	be	plugged	as	an	argument	together	with	some	
as	 yet	 unclassified	 input	 data	 into	 the	 predict()	 function	 to	 yield	
predicted	output	values.	

The	 NB	 algorithm	 is	 fast,	 simple	 to	 apply	 (there	 are	 no	 model	
parameters	 that	 have	 to	 be	 adjusted	 manually)	 and,	 by	 design,	 not	
severely	 sensitive	 to	missing	 values	 in	 the	 data	 set	 (Kotsiantis	 2007).	
This	can	come	in	handy	if,	for	example,	only	partially	annotated	corpus	
data	are	available.	Moreover,	differential	scaling	is	not	an	issue	with	the	
NB	 algorithm,	 which	 is	 practical	 for	 diachronic	 applications.	 It	 is,	
however,	 in	 general	 less	 accurate	 than	 other	 machine	 learning	
algorithms.	 Consequently,	 it	 requires	 larger	 training	 data	 sets,	 which	
may	be	problematic	when	working	with	historical	language	data.	On	the	
other	hand,	 if	many	variables	are	 involved	 it	 is	potentially	superior	 to	
other	algorithms	even	if	data	sets	are	small	(Hand	&	Yu	2001).	

2.2.3 Artificial	neural	network	(ANN)	
The	final	machine	learning	approach	discussed	in	this	paper	is	inspired	
by	 the	 neurological	 sciences	 (McCulloch	 &	 Pitts	 1943,	 Ripley	 1996,	
Venables	&	Ripley	 2002).	 Artificial	 neural	 networks	 (ANN)	have	 been	

145	 Machine	learning	in	diachronic	corpus	phonology	

developed	to	model	interactions	among	linked	neurons.	ANNs	consist	of	
a	 number	 of	 different	 layers:	 an	 input	 layer,	 an	 output	 layer	 and	
(potentially	multiple)	hidden	 layers	 in	between.	Each	 layer	consists	of	
nodes,	 and	 nodes	 from	 different	 layers	 are	 linked	 to	 each	 other.	 In	
machine-learning	terms	the	nodes	in	the	input	layer	represent	the	input	
variables	 and	 the	 nodes	 in	 the	 output	 layer	 represent	 the	 output	
variables.	 In	 this	 paper	 we	 will	 only	 discuss	 unidirectional	 (so-called	
feed	forward)	networks	with	a	single	hidden	layer	and	a	single	output	
node	 (schwa	 present).	 Figure	 1c	 shows	 a	 representation	 of	 the	 ANN	
which	 accounts	 for	 the	 data	 introduced	 in	 2.1.8	 ANNs	 with	 a	 single	
hidden	 layer	 are	 also	 referred	 to	 as	 ‘shallow’.	 Shallow	 ANNs	 have	 a	
much	simpler	architecture	 than	 ‘deep’	ANNs	which	may	 feature	many	
hidden	 layers	 and	 hundreds	 of	 thousands	 of	 nodes	 (LeCun,	 Bengio	 &	
Hinton	2015,	Schmidhuber	2015).	The	training	and	usage	of	deep	ANNs	
(‘deep	learning’)	goes	beyond	the	scope	of	this	paper.		

The	 question	 now	 is:	 under	 which	 condition	 is	 the	 output	 node	
activated,	viz.	when	is	it	true	or	false?	This	depends	on	two	factors:	first,	
on	 the	 values	 of	 the	 input	 nodes,	 and	 second	 on	 the	 strengths	 of	 the	
links	among	nodes	(as	well	as	some	constant	additive	bias	terms,	very	
much	like	intercepts	in	regression	models,	labeled	B1	and	B2	in	Figure	
1c).	These	strengths	(or	weights)	can	be	positive	if	activation	of	a	node	
is	promoted,	or	negative	if	 it	 is	 inhibited	by	its	predecessor	(shown	as	
dark	 orange	 solid	 and	 light	 orange	 dashed	 lines	 in	 Figure	 1c),	
respectively.	The	actual	activation	of	a	node	depends	on	the	sum	of	all	
weights	 going	 into	 that	 node	 and	 is	 modeled	 by	 some	 activation	 (or	
decision)	 function.	 In	 simple	 networks,	 a	 common	 choice	 for	 the	
activation	 function	 is	 the	 logistic	 function	𝑓 𝑥 = 1/(1 + 𝑒&$).	 It	has	a	
sigmoid	 shape	 and	 maps	 real	 values	 (which	 may	 be	 positive	 or	
negative)	 to	 values	 within	 the	 unit	 interval.	 The	 actual	 classification	
takes	place	in	the	output	layer:	if	𝑓 𝑥 	scores	above	a	certain	activation	
level	 (most	often	0.5),	 the	node	 is	 activated;	here,	 schwa	present,	 and	
absent	otherwise	(see	plot	in	the	upper	right	corner	of	Figure	1c).		

Given	a	set	of	weights	(with	biases)	and	input	values,	one	can	thus	
predict	 the	 output	 value.	 The	 determination	 of	 the	weights	 is	 exactly	
what	happens	during	learning,	i.e.	if	the	ANN	is	trained	on	a	set	of	given	
input	 and	 output	 values,	 just	 like	 coefficients	 which	 are	 estimated	 in	
regression	procedures	(Cheng	&	Titterington	1994).	To	arrive	at	a	set	of	
weights	 that	 account	 for	 the	 training	 data	 in	 an	 accurate	 way,	 a	 so-
called	 loss	 function	 must	 be	 computed	 which	 measures	 the	 overall	
deviation	of	the	predicted	output	values	from	the	actual	output	values.	

8	Note	that	it	only	features	three	input	variables.	This	will	be	discussed	in	section	2.3.	

Andreas	Baumann	 	 146	

This	 loss	 function	 clearly	 depends	 on	 the	model	 weights.	 Finally,	 the	
weights	are	 chosen	 in	 such	a	way	 that	 the	 loss	 function	 is	minimized.	
Again,	this	is	equivalent	to	minimizing	the	sum	of	squared	residuals	in	
regression	models.	Since	ANNs	typically	involve	many	weights,	this	can	
be	 computationally	 intensive.	 There	 are	 various	 minimization	
procedures,	 some	 of	 which	 are	 faster	 than	 others.	 For	 a	 review	 and	
comparison	of	ANNs	and	(logistic)	regression	models	see	Dreiseitl	and	
Ohno-Machado	(2002).9	A	brief	introduction	to	the	optimization	of	deep	
ANNs	is	provided	by	LeCun	et	al.	(2015)	

There	are	many	packages	 in	R	which	allow	one	 to	compute	ANNs,	
one	of	which	 is	 the	nnet	 package	 (Venables	&	Ripley	2002)	with	 the	
identically	 named	 built	 in	 function.	 The	 nnet()	 function	 computes	
ANNs	with	a	 single	hidden	 layer	and	has	 in-built	 options	 for	different	
activation	 functions	 (logistic	 as	 default).	 Syntactically,	 it	 works	 like	
most	inferential	methods	in	R.	Its	output	is	a	model	object	which	can	be	
used	to	predict	output	values	for	a	given	set	of	input	values.	

ANNs	 are	 characterized	 as	 an	 accurate	 ML	 technique	 with	 fast	
classification,	 albeit	 relatively	 slow	 learning	 and	 low	 tolerance	 of	
missing	 data	 values	 (Kotsiantis	 2007).	 Their	 biggest	 disadvantage	 is	
that	 arriving	 at	 an	 optimal	 network	 architecture	 is	 not	 trivial.	 Two	
questions	arise:	(i)	how	many	hidden	layers	should	be	included	and	(ii)	
how	 many	 nodes	 per	 hidden	 layer	 are	 optimal?	 Regarding	 the	 first	
question,	 it	has	been	argued	that	a	single	hidden	 layer	 is	sufficient	 for	
addressing	relatively	simple	problems	(Ripley	1996,	Dreiseitl	&	Ohno-
Machado	2002).	As	to	the	second	question,	 there	are	rough	guidelines	
of	 how	many	 hidden	 nodes	 should	 be	 included,	 such	 as	𝑁J ≤ 𝑁L + 1	
(which	 was	 employed	 in	 this	 paper;	 see	 Kiranyaz	 et	 al.	 2009	 for	 a	
concise	summary).	Optimizing	network	structure	is	a	difficult	task	and	
usually	 done	 experimentally	 through	 many	 cycles	 of	 training	 and	
evaluating	different	ANNs.		

The	 major	 advantage	 of	 ANNs	 is	 that	 they	 can	 learn	 extremely	
complex	 relationships	 between	 input	 and	 output	 data	 provided	 that	
there	 is	 (a)	 enough	 data	 available	 and	 (b)	 an	 appropriate	 network	
architecture	(Schmidhuber	2015).		

It	is	worth	pointing	out	that	ANNs	with	logistic	activation	functions	
have	 a	 clear	 advantage	 over	 other	 ML	 algorithms	 with	 regard	 to	
diachronic	 linguistics:	 it	 has	 been	 pointed	 out	 repeatedly	 that	
phenomena	 of	 linguistic	 change	 adopt	 a	 sigmoid,	 i.e.	 logistic,	
development	(Kroch	1989,	Denison	2003,	Blythe	&	Croft	2012,	Wang	&	
Minett	 2005).	 Since	 time	 is,	 by	 definition,	 a	 relevant	 variable	 in	

9	As	a	matter	of	 fact,	ANNs	can	be	seen	as	generalization	of	 logistic	(or	multinomial)	
regression.	See	also	Ripley	(1996).	

147	 Machine	learning	in	diachronic	corpus	phonology	

diachronic	 corpora,	 it	 is	 evident	 that	 logistic	 link	 functions,	 which	
effectively	 mimic	 logistic	 models,	 provide	 a	 useful	 tool	 for	 modeling	
dynamic	 language	 phenomena.	 Thus,	 beyond	 having	 computational	
advantages,	 ANNs	 also	 account	 for	 language	 change	 in	 a	 linguistically	
meaningful	way.		

2.3 Evaluation	and	model	optimization	
After	running	the	ML	algorithms	described	in	the	previous	subsection,	
the	models	derived	from	the	training	data	need	to	be	evaluated.	This	is	
done	by	comparing	the	predictions	for	the	output	values	based	on	the	
input	 test	 data	 (in	 our	 case	 1/3	 of	 the	 complete	 data	 set)	 against	 the	
actual	output	values	in	the	test	data.	

One	 straightforward	 measure	 of	 the	 performance	 of	 a	 model	 is	
accuracy,	i.e.	the	fraction	of	correctly	identified	labels.	Since	we	have	a	
binary	output	variable,	 the	performance	of	the	model	can	be	arranged	
as	 a	 2-by-2	 contingency	 table.	 For	 the	 KNN	 algorithm	 applied	 to	 the	
present	test	data	we	have	for	instance:	
	

 N (predicted) Y (predicted)

N (actual) 131 19

Y (actual) 9 39
	

Table	1:	KNN	performance	(schwa	present	‘Y’;	schwa	absent	‘N’)	
	
Thus,	170	out	of	198	items	in	the	test	data	were	 labeled	correctly.	

This	amounts	to	a	reasonably	high	accuracy	of	86%.		
As	 in	 regression	modeling,	 having	 too	many	 input	 variables	 bears	

the	 risk	of	 overfitting,	 so	 that	model	 estimates	 are	unreliable.	We	 can	
use	accuracy	to	conduct	a	basic	model	optimization	procedure.	For	this,	
we	simply	run	an	ML	algorithm	(e.g.	KNN)	for	every	possible	subset	of	
input	variables.	For	each	 run,	we	compute	accuracy	and	subsequently	
rank	 all	 input	 variable	 sets	 by	 their	 performance.	 Figure	 2	 shows	
accuracy	scores	 for	all	possible	combinations	of	 input	variables	 in	 the	
three	ML	techniques	discussed	in	this	paper.	

A	 couple	 of	 remarks	 are	 in	 order.	 First,	 KNN	 and	 ANN	 show	
relatively	 equal	 accuracy	 while	 NB	 scores	 lower	 overall.	 Second,	 the	
choice	of	variables	does	not	affect	KNN	and	ANN	that	much	while	NB	is	
severely	 affected	 by	 the	 selection	 of	 input	 variables.	 Third,	 almost	 all	
constellations	featuring	time	belong	to	the	best	input	variable	sets	in	all	
algorithms.	 This	 indicates	 that	 time	 is	 particularly	 relevant	 for	
explaining	schwa	loss	(evidently,	not	a	surprising	result).	Finally,	model	

Andreas	Baumann	 	 148	

accuracy	 does	 not	 necessarily	 increase	 with	 the	 number	 of	 input	
variables.	 In	 particular,	 we	 can	 see	 that	 while	 the	 optimal	 input	
configuration	 of	 KNN	 and	 NB	 features	 all	 four	 variables,	 length	 is	
dropped	 in	 the	 top-most	 ANN	 model.	 For	 that	 reason,	 only	 three	
variables	were	used	for	the	ANN	in	this	paper	(cf.	Figure	1c).	

	

	
	

Figure	2:	Model	optimization	through	comparison	of	input	variables.		
Vertical	axis:	model	accuracy	(fraction	of	correct	predictions	in	training	set).	

Horizontal	axis:	subsets	of	input	variables	among	length	(lgt),	morphology	(morph),	
right	context	(ctx),	and	time,	ranked	by	model	accuracy.	KNN	and	NB	are	optimal	if	all	
available	input	variables	are	considered;	ANN	prefers	a	smaller	set	of	input	variables.	
Overall,	KNN	and	ANN	show	a	similar	slightly	increasing	behavior	while	NB	accuracy	

crucially	depends	on	the	selection	of	input	variables.	
	
This	procedure	of	 comparing	models	 is	very	basic.	 Ideally,	models	

should	 be	 validated	 at	 multiple	 random	 (mutually	 disjoint)	 subsets,	
which	 is	 often	 not	 possible	 if	 data	 sets	 are	 small.	 For	 a	 more	
comprehensive	discussion	of	accuracy	and	more	robust	model	selection	
procedures	see	Kohavi	(1995).	

3 Application:	inferring	the	diachrony	of	final	/mb(ə)/	
In	 order	 to	 demonstrate	 the	 use	 of	 ML	 techniques	 in	 diachronic	
phonology,	let	us	apply	the	ML	models	trained	on	verse	data	described	
in	 the	 previous	 section	 to	 some	 corpus	 data.	 One	 interesting	
phenomenon	in	the	history	of	English	phonotactics	is	that	of	/b/	loss	in	
final	 /mb/	 clusters,	 like	 in	 lamb	 or	 thumb,	 in	most	English	 varieties.10	
The	change	has	been	suggested	to	have	occurred	at	some	point	during	

10	 Final	 /mb/	 is	 a	 convenient	 test	 case	 for	 yet	 another	 reason:	 it	 almost	 exclusively	
occurs	 in	 nouns	 so	 that	word	 class	 can	 be	 excluded	 as	 potentially	 relevant	 factor.	 I	
would	like	to	thank	Klaus	Hofmann	for	pointing	this	out.		

149	 Machine	learning	in	diachronic	corpus	phonology	

the	 Middle	 English	 period	 (Ritt	 1994,	 Dziubalska-Kołaczyk	 2005,	
Starčević	2006).	

It	 is	 very	 likely	 that	 this	 change	 happened	 as	 a	 reaction	 to	 schwa	
loss.	 If	 final	 schwa	 is	 dropped,	 /b/	 moves	 into	 the	 coda	 of	 the	 final	
syllable.	 	 Since	 both	 segments	 are	 voiced	 and	 articulated	 at	 the	 same	
place,	this	may	lead	to	insufficient	articulatory	and	perceptual	contrast	
(contra	the	principle	of	sonority	sequencing	and	the	obligatory	contour	
principle;	see	e.g.	Clements	1990,	Guy	&	Boberg	1997,	Boll-Avetisyan	&	
Kager	 2016).	One	 resolution	 of	 this	 conflict	would	 be	 to	 devoice	 final	
/b/;	another	one	is	cluster	reduction,	which	actually	took	place.	

A	question	relevant	to	the	present	phenomenon	is:	when	did	it	start	
to	 propagate?	 It	 is	 reasonable	 to	 assume	 that	 /mb(ə)/	 reduction	
required	 a	 reasonable	 number	 of	 final	 /mb/	 sequences	 (we	 have	
pointed	 out	 elsewhere	 that	 high	 frequency	 destabilizes	 rather	 than	
stabilizes	phonotactic	 items;	 see	Baumann	&	Ritt	2018).	However,	 for	
lack	of	phonologically	annotated	corpora	it	is	difficult	to	measure	token	
frequencies,	 because	we	 cannot	 be	 sure	 if	 graphemically	 represented	
schwas	 have	 a	 phonological	 counterpart.	 Furthermore,	 there	 is	
probably	 not	 enough	 verse	 data	 available	 to	 yield	 statistically	 robust	
measures	of	phonologically	interpretable	final	<mbe>	items.	

At	 this	 point,	 we	 can	 make	 use	 of	 our	 machine	 learning	 models	
trained	on	verse	data.	The	idea	is	to	extract	all	 final	<mbe>	sequences	
from	a	 large	corpus	(the	Penn	Helsinki	corpora;	Kroch	&	Taylor	2000,	
Kroch,	 Santorini	&	Delfs	2004)	 and	 let	 the	 trained	ML	models	predict	
whether	 or	 not	 graphemically	 represented	 schwas	 are	 phonologically	
empty	 for	 each	 particular	 token.	 Such	 a	 list	 of	 potentially	 final	 /mb/	
items	 can	 be	 conveniently	 retrieved	 from	 the	 ECCE	 database	 (Ritt,	
Prömer	 &	 Baumann	 2017),	 together	 with	 information	 about	 the	
subsequent	 phonological	 context,	 morphological	 information	 (i.e.	
whether	there	 is	suffixation	 involved),	and	different	measures	of	 time.	
It	 is	 straightforward	 to	 compute	 the	 number	 of	 graphemes	 for	 each	
word	token	as	well.	The	resulting	list	of	<mbe>	instances	can	be	found	
in	the	associated	materials	(394	items	in	total).11		

Counting	the	number	of	items	with	lost	schwa	(‘N’)	in	the	predicted	
output	data	set	per	century	leads	to	the	historical	trajectories	shown	in	
Figure	3.	The	gray	line	in	this	plot	corresponds	to	frequencies	predicted	
by	a	logistic	model.	These	frequencies	can	be	extracted	from	the	ECCE	
database,	 which	 contains	 probabilistic	 weights	 computed	 for	 each	
token.	 Predicted	 frequencies	 in	 ECCE	 then	 are	 simply	 the	 sums	 of	 all	

11	To	keep	the	present	illustration	as	simple	as	possible,	I	only	look	at	final	<mbe>	and	
do	 not	 take	 final	 <mb>	 into	 account	 (of	 which	 there	 are	 90	 tokens	 spread	 over	 all	
periods).		

Andreas	Baumann	 	 150	

weights	in	each	century	(note	that	these	weights	were	computed	based	
on	a	 logistic	model	which	only	depends	on	the	right	context	and	time;	
see	Baumann	et	al.	 forthcoming,	and	 for	a	related	approach	Baumann,	
Ritt	&	Prömer	2016).			

	

	
	

Figure	3:	Predicted	(per	million	normalized)	token	frequencies	of	final	<mbe>	
sequences	realized	as	/mb/	from	1100	to	1600.	Color	code:	KNN	magenta;	NB	cyan;	
ANN	orange.	The	gray	curve	represents	frequencies	predicted	from	the	logistic	model	
in	Baumann	&	Prömer	(2017).	It	can	be	seen	that	/mb/	peaks	around	1300.	Note	that	

in	the	present	study,	KNN	predicts	absent	schwa	for	all	items.			
	
There	 are	 remarkable	 differences	 between	 the	 predictions	 by	 the	

three	 ML	 techniques	 discussed	 in	 this	 paper.	 KNN	 maximizes	 schwa	
loss	in	the	sense	that	all	<mbe>	items	are	classified	as	/mb/.12	NB	goes	
in	 the	 opposite	 direction	 and	 predicts	 that	 final	 schwas	 have	 been	
present	 throughout	 the	entire	observation	period.	The	ANN	trajectory	
is	 somewhere	 in	 between:	 at	 the	 beginning,	 schwas	 are	 treated	 as	
present	 while	 they	 are	 lost	 from	 1300	 onwards.	 The	 trajectory	
predicted	by	 the	 logistic	model	 is	 slightly	below	 the	one	of	KNN	 (and	
later	 ANN).	 Note,	 however,	 that	 the	 trajectories	 predicted	 by	 the	 ML	

12	This	can	be	likely	attributed	to	the	fact	that	all	variables	in	our	data	are	effectively	
measured	on	discrete	scales	(centuries;	number	of	graphemes;	binary	distinctions)	so	
that	points	are	clustered	 together.	 See	Figure	1a	which	uses	 jittered	coordinates	 for	
easier	 visibility.	 Overall,	 there	 are	 more	 N	 than	 Y	 labels.	 Since	 KNN	 includes	 all	
equidistant	 Kth	 neighbors	 for	 majority	 votes	 this	 entails	 it	 is	 much	 more	 likely	 to	
choose	label	N	(schwa	lost)	than	to	choose	label	Y	(schwa	present).		

151	 Machine	learning	in	diachronic	corpus	phonology	

models	 depend	 on	 a	 single	 training	 sample.	 Using	 a	 different	 sample	
may	 change	 the	 predicted	 trajectories	 (as	 the	 reader	 can	 explore	 by	
running	 the	 associated	 script).	 A	 thorough	 analysis	 would	 require	
comparisons	 of	 multiple	 trajectories	 based	 on	 a	 larger	 number	 of	
training	 samples	 (which,	 ideally,	 should	 be	 independent	 from	 each	
other).	

What	 can	 we	 learn	 about	 /mb/	 reduction	 given	 these	 frequency	
developments?	Judging	from	the	respective	peaks	of	the	trajectories,	it	
can	be	inferred	that	the	pressure	for	dropping	final	/b/	was	highest	in	
the	late	12th	or	13th	century.	Consequently,	we	can	expect	reduction	of	
/mb/	 to	 have	 started	 already	 in	 the	 middle	 of	 the	 Middle	 English	
period.	 This	 is	 in	 line	 with	 Lass	 	 (1992),	 who	 suggests	 pre-cluster	
lengthening	 (as	 in	 climb)	 to	 have	 occurred	 early	 in	 ME.	 Given	 our	
analysis	 we	 must	 remain	 agnostic	 with	 respect	 to	 the	 offset	 of	 that	
change,	though.	Note	that	the	present	analysis	can	give	us	no	answer	to	
the	 question	 of	 why	 final	 /mb/	 decreased	 in	 frequency	 in	 the	 EME	
period	either.	 It	only	 tells	us	predicted	 frequencies	of	 final	/mb/	from	
which	we	 infer	 the	 period	 showing	 the	 highest	 pressure	 for	 reducing	
/mb/	 to	 /b/.	We	 conclude	 that	 /mb/	 reduction	was	 a	 relatively	 early	
development.	

4 Conclusion	and	outlook	
In	 this	 paper,	 I	 have	 reviewed	 three	 standard	 machine	 learning	
techniques	and	demonstrated	how	they	can	be	employed	to	make	use	
of	written	(prose)	corpus	data	 for	diachronic	research	 in	phonology.	 I	
trained	 three	 classifiers	—	 K-nearest	 neighbors,	 naïve	 Bayes,	 and	 an	
artificial	 neural	 network	 —	 on	 verse	 data	 which	 are	 phonologically	
interpretable	 with	 respect	 to	 a	 specific	 phonological	 property	
(presence/absence	of	final	schwa).	Finally,	the	predictions	from	the	ML	
models	were	used	 to	 infer	 token	 frequencies	of	 final	 /mb/	clusters	 in	
the	history	of	English.	The	key	 feature	of	 the	procedure	 is	 that	 I	used	
models	 trained	 on	 phonologically	 interpretable	 data	 to	 classify	 a	
relatively	large	amount	of	prose	data	for	which	a	reliable	phonological	
assessment	is	difficult	without	the	help	of	statistical	techniques.	

Which	 of	 the	 three	 ML	 algorithms	 is	 most	 promising	 for	
applications	 in	 diachronic	 corpus	 phonology?	 Clearly,	 there	 is	 no	
straightforward	answer	to	this	question,	as	the	choice	of	methodology	
always	depends	on	the	data	at	hand.	For	instance,	if	datasets	are	huge,	
more	 parsimonious	 algorithms	 like	 NB	 might	 be	 preferred	 to	 KNN,	
which	 show	 comparably	 slow	 classification.	 Likewise,	 the	 training	 of	
ANNs	might	take	too	long	if	the	network	architecture	is	too	complex.	NB	
potentially	outperforms	KNN	and	ANN	if	datasets	are	incomplete,	i.e.	if	

Andreas	Baumann	 	 152	

some	 entries	 are	 missing.	 The	 latter	 is	 a	 non-negligible	 problem	 if	
morphosyntactic	 annotations	 (e.g.	 PoS	 tags)	 or	 lemmas	 function	 as	
input	 variables,	 because	 historical	 language	 data	 are	 often	 difficult	 to	
classify	(e.g.	due	to	spelling	variation	or	ongoing	grammatical	change).	

When	it	comes	to	reliability,	however,	neural	networks	seem	to	be	
the	method	of	choice,	at	least	in	the	present	analysis:	based	on	the	given	
training	sample,	they	score	highest	on	accuracy	and	the	predictions	for	
final	 schwa	 loss	 in	 /mb/	were	 neither	 too	 conservative	 (like	NB)	 nor	
too	 generous	 (like	 KNN).	 Finally,	 their	 formal	 setup	 makes	 ANNs	
particularly	 useful	 for	 diachronic	 applications.	 Since	 ANNs	 are	
effectively	 generalizations	 of	 logistic	 models	 (if,	 as	 commonly	 done,	
sigmoid	activation	 functions	are	used)	 they	account	 for	phenomena	of	
linguistic	change	in	a	theoretically	plausible	and	empirically	supported	
way	(Kroch	1989,	Ripley	1996,	Denison	2003).	

Besides	providing	a	review	of	a	couple	of	ML	techniques,	one	goal	of	
this	paper	was	 to	demonstrate	 that	 applying	ML	 to	diachronic	 corpus	
data	is	not	particularly	difficult.	In	fact,	software	packages	and	functions	
dedicated	to	machine	learning	are	numerous	(e.g.	the	R	packages	used	
in	this	paper)	and	running	ML	algorithms	is	in	general	no	more	difficult	
than	 computing	 a	 straightforward	 regression	model	 (certain	 technical	
subtleties	are	present	 in	both,	nevertheless).	While	the	primary	use	of	
regression	techniques	in	 linguistic	research	lies	 in	the	identification	of	
significant	 interactions	among	certain	 factors	 (e.g.	 linguistic	 structure,	
frequency	 and	 time),	 supervised	 ML	 classification	 techniques	 tend	 to	
focus	 on	 a	 different	 aspect:	 they	 can	 yield	 more	 nuanced	 data.	
Particularly	 in	 historical	 corpus	 linguistics,	 I	 think,	 having	 more	
nuanced	data	is	never	a	bad	thing.	

	
	

Comments	invited	
PiHPh	relies	on	post-publication	review	of	the	papers	that	it	publishes.	
If	 you	 have	 any	 comments	 on	 this	 piece,	 please	 add	 them	 to	 its	
comments	site.	You	are	encouraged	to	consult	this	site	after	reading	the	
paper,	as	there	may	be	comments	from	other	readers	there,	and	replies	
from	the	author.	This	paper’s	site	is	here:	

	

https://doi.org/10.2218/pihph.3.2018.2878	
	

	

Acknowledgements	
I	 would	 like	 to	 thank	 Klaus	 Hofmann,	 Kamil	 Kaźmierski,	 Theresa	
Matzinger,	 Niki	 Ritt,	 Marlene	 Schwarz,	 as	 well	 as	 Patrick	 Honeybone	

153	 Machine	learning	in	diachronic	corpus	phonology	

and	 Julian	 Bradfield	 for	 careful	 proof	 reading	 and	 many	 valuable	
comments	on	the	manuscript	and	the	associated	script.	

Associated	material	
The	 R	 script	 used	 to	 compute	 the	 ML	 models,	 predictions	 and	
visualizations	 in	 this	 paper	 can	 be	 found	 here	 (click	
‘Download/Downloaden’	or	‘View	in	browser/Objekt	anzeigen’):		
	

http://phaidra.univie.ac.at/o:754466			
By	running	this	script	all	necessary	data	are	automatically	imported	

from	 the	Phaidra	 repository	 (schwa	 loss	 estimates	 from	verse	data	 in	
Baumann	&	Prömer	2017:	phaidra.univie.ac.at/o:740449;	final	/mb(e)/	
sequences	 retrieved	 from	 ECCE	 database,	 Ritt	 et	 al.	 2017:	
phaidra.univie.ac.at/o:740448;	 text	 sizes	 for	 frequency	 normalization	
drawn	 from	 Kroch	 &	 Taylor	 2000	 and	 Kroch	 et	 al.	 2004:	
phaidra.univie.ac.at/o:740372).	 Note	 that	 certain	 R	 packages	must	 be	
installed	beforehand	(see	script	for	further	details).	

Author	contact	details	
Andreas	Baumann	
University	of	Vienna	
Spitalgasse	2-4,	8.3	
Vienna,	A-1180	
Austria	

	

andreas.baumann@univie.ac.at	

References	
Anthony,	 Laurence.	 2013.	 AntCLAWSGUI.	 Tokyo:	 Waseda	 University.	

http://www.laurenceanthony.net/software.	
Baron,	 Alistair	 &	 Paul	 Rayson.	 2008.	 VARD2:	 a	 tool	 for	 dealing	 with	

spelling	 variation	 in	 historical	 corpora.	 Proceedings	 of	 the	
Postgraduate	Conference	in	Corpus	Linguistics.	

Baron,	Alistair	&	Paul	Rayson.	2009.	Automatic	standardisation	of	texts	
containing	 spelling	 variation:	 How	 much	 training	 data	 do	 you	
need?	Proceedings	of	Corpus	Linguistics	2009.	

Baumann,	Andreas	&	Christina	Prömer.	2017.	 Interpolating	diachronic	
phonotactic	 data:	 On	 the	 logistic	 spread	 of	Middle	 English	 schwa	
loss.	23rd	ICHL,	San	Antonio,	TX.	

Baumann,	 Andreas,	 Christina	 Prömer	 &	 Nikolaus	 Ritt.	 Forthcoming.	
Reconstructing	 the	 spread	 of	 Middle	 English	 schwa	 deletion.	
Italian	 Journal	 of	 Linguistics	 (Special	 Issue,	 edited	 by	 Anderson,	

Andreas	Baumann	 	 154	

Cormac	&	Natalia	Kuznetsova).	
Baumann,	Andreas	&	Nikolaus	Ritt.	2018.	The	basic	reproductive	ratio	

as	a	link	between	acquisition	and	change	in	phonotactics.	Cognition	
176.	174–183.	doi:10.1016/j.cognition.2018.03.005.	

Baumann,	Andreas,	Nikolaus	Ritt	&	Christina	Prömer.	2016.	Diachronic	
dynamics	 of	 Middle	 English	 phonotactics	 provide	 evidence	 for	
analogy	 effects	 among	 lexical	 and	 morphonotactic	 consonant	
clusters.	 Papers	 in	 Historical	 Phonology	 1.	 50–75.	
doi.org/10.2218/pihph.1.2016.1693	

Blythe,	Richard	A	&	William	Croft.	2012.	S-curves	and	the	mechanism	of	
propagation	in	language	change.	Language	88(2).	269–304.	

Boll-Avetisyan,	 Natalie	 &	 René	 Kager.	 2016.	 Is	 speech	 processing	
influenced	 by	 abstract	 or	 detailed	 phonotactic	 representations?	
The	 case	 of	 the	Obligatory	 Contour	 Principle.	Lingua	 171.	 74–91.	
doi:10.1016/j.lingua.2015.11.008.	

Burzio,	 Luigi.	 2007.	 Phonology	 and	 phonetics	 of	 English	 stress	 and	
vowel	reduction.	Language	Sciences	29(2–3).	154–176.	

Cheng,	B	&	Dm	Titterington.	 1994.	Neural	 networks:	A	 review	 from	a	
statistical	 perspective.	 Statistical	 science.	 9	 (1).	 38–42.	
doi:10.1214/ss/1177010642.	

Clements,	 G	 N.	 1990.	 The	 role	 of	 the	 sonority	 cycle	 in	 core	
syllabification.	 In	 J	 Kingston	 &	 M	 Beckman	 (eds.),	 Papers	 in	
Laboratory	 Phonology	 I:	 Between	 the	 grammar	 and	 the	 physics	 of	
speech,	282–333.	Cambridge:	Cambridge	Univ.	Press.	

Daland,	 Rober	 &	 Janet	 Pierrehumbert.	 2011.	 Learning	 diphone-based	
segmentation.	Cognitive	Science	35.	119–155.	

Denison,	 David.	 2003.	 Log(ist)ic	 and	 simplistic	 S-curves.	 In	 Raymond	
Hickey	 (ed.),	 Motives	 for	 Language	 Change,	 54–70.	 Cambridge:	
Cambridge	University	Press.	

Dreiseitl,	 Stephan	 &	 Lucila	 Ohno-Machado.	 2002.	 Logistic	 regression	
and	artificial	neural	network	classification	models:	A	methodology	
review.	 Journal	 of	 Biomedical	 Informatics.	 35(5-6).	 352–359	
doi:10.1016/S1532-0464(03)00034-0.		

Dresher,	 B	 Elan	&	 Aditi	 Lahiri.	 2005.	Main	 stress	 left	 in	 Early	Middle	
English.	Historical	 Linguistics	 2003:	 Selected	 Papers	 from	 the	 16th	
International	Conference	on	Historical	Linguistics,	Copenhagen,	11-
15	August	2003.	75–85.	

Dressler,	 Wolfgang	 Ulrich,	 Katarzyna	 Dziubalska-Kołaczyk	 &	 Lina	
Pestal.	 2010.	 Change	 and	 variation	 in	 morphonotactics.	 Folia	
Linguistica	Historica	31.	51–68.	doi:10.1515/flih.2010.003.	

Dziubalska-Kołaczyk,	 Katarzyna.	 2005.	 Phonotactics	 of	 consonant	
clusters	 in	 the	 history	 of	 English.	 In	 Antonio	 Bertacca	 (ed.),	
Historical	 Linguistic	 Studies	 of	 Spoken	 English,	 3–21.	 Pisa:	

155	 Machine	learning	in	diachronic	corpus	phonology	

University	of	Pisa:	PLUS.	
Ellison,	T	Mark.	1994.	The	machine	learning	of	phonological	structure.	

University	of	Western	Australia.	
Fix,	 Evelyn ;	 Hodges,	 Jr,	 J	 L.	 1952.	 Discriminatory	 analysis	 –	

Nonparametric	discrimination:	Small	sample	performance.	Project	
No.	 21-49-004,	 Report	 No.	 11,	 Contract	 No.	 AF	 41(129)-31,	 USAF	
School	of	Aviation,	Randolph	Field,	Texas.,	1–48.	

Fogel,	D	B.	1991.	An	 information	criterion	 for	optimal	neural	network	
selection.	 IEEE	 transactions	 on	 neural	 networks	 /	 a	 publication	 of	
the	 IEEE	 Neural	 Networks	 Council	 2(5).	 490–7.	
doi:10.1109/72.134286.		

Guo,	Gongde,	Hui	Wang,	David	Bell,	Yaxin	Bi	&	Kieran	Greer.	2003.	kNN	
Model-Based	 Approach	 in	 Classification.	 On	 The	 Move	 to	
Meaningful	Internet	Systems	2003:	CoopIS,	DOA,	and	ODBASE	2888.	
986–996.	doi:10.1007/b94348.		

Guy,	 Gregory	 R	 &	 Charles	 Boberg.	 1997.	 Inherent	 variability	 and	 the	
obligatory	contour	principle.	Language	Variation	and	Change	9(2).	
149–164.	doi:10.1017/S095439450000185X.	

Hand,	David	 J.	&	Keming	Yu.	 2001.	 Idiot’s	Bayes	 –	Not	 so	 stupid	 after	
all?	 International	 Statistical	 Review	 69(3).	 385–398.	
doi:10.1111/j.1751-5823.2001.tb00465.x.	

Hogg,	Richard	M	&	Christopher	B	McCully.	1987.	Metrical	Phonology:	A	
Course	Book.	Cambridge:	Cambridge	University	Press.		

Kiranyaz,	Serkan,	Turker	Ince,	Alper	Yildirim	&	Moncef	Gabbouj.	2009.	
Evolutionary	 artificial	 neural	 networks	 by	 multi-dimensional	
particle	swarm	optimization.	Neural	Networks	22(10).	1448–1462.	
doi:10.1016/j.neunet.2009.05.013.	

Kohavi,	 Ron.	 1995.	 A	 Study	 of	 Cross-Validation	 and	 Bootstrap	 for	
Accuracy	 Estimation	 and	 Model	 Selection.	 Appears	 in	 the	
International	 Joint	 Conference	 on	 Articial	 Intelligence	 (IJCAI),	 1–7.	
doi:10.1067/mod.2000.109031.		

Kopaczyk,	 Joanna,	 Benjamin	 Molineaux,	 Vasilios	 Karaiskos,	 Rhona	
Alcorn,	Bettelou	Los	&	Warren	Maguire.	2018.	Towards	a	grapho-
phonologically	 parsed	 corpus	 of	medieval	 Scots:	 Database	 design	
and	technical	solutions.	Corpora	13(2).	255–269.	

Kotsiantis,	 S	 B.	 2007.	 Supervised	 Machine	 Learning:	 A	 Review	 of	
Classification	 Techniques.	 Informatica	 31.	 249–268.	
doi:10.1115/1.1559160.	

Kroch,	 Anthony.	 1989.	 Reflexes	 of	 Grammar	 in	 Patterns	 of	 Language	
Change.	Language	Variation	and	Change	1.	199–244.	

Kroch,	Anthony,	Beatrice	Santorini	&	Lauren	Delfs.	2004.	Penn-Helsinki	
Parsed	 Corpus	 of	 Early	 Modern	 English.	
http://www.ling.upenn.edu/hist-corpora/.	

Andreas	Baumann	 	 156	

Kroch,	 Anthony	 &	 Ann	 Taylor.	 2000.	 Penn-Helsinki	 Parsed	 Corpus	 of	
Middle	English.	http://www.ling.upenn.edu/hist-corpora/.	

Lass,	Roger.	1992.	Phonology	and	morphology.	 In	Norman	Blake	(ed.),	
The	 Cambridge	 History	 of	 the	 English	 Language,	 23–155.	 (The	
Cambridge	History	of	the	English	Language).	New	York:	Cambridge	
University	Press.	

LeCun,	 Yann,	 Yoshua	 Bengio	 &	 Geoffrey	 Hinton.	 2015.	 Deep	 learning.	
Nature		521.	436–444.	doi:10.1038/nature14539.	

Manning,	 Christopher	 D.	 2015.	 Computational	 Linguistics	 and	 Deep	
Learning.	 Computational	 Linguistics	 41(4).	 701–707.	
doi:10.1162/COLI_a_00239.		

McCulloch,	Warren	S.	&	Walter	H.	Pitts.	1943.	A	logical	calculus	of	ideas	
imminent	in	nervous	activity.	Bulletin	of	Mathematics	Biophysics	5.	
115–133.	doi:10.1007/BF02478259.	

Minkova,	Donka.	1991.	The	history	of	final	vowels	in	English:	The	sound	
of	muting.	Berlin:	Walter	de	Gruyter.	

Murata,	 Noboru,	 Shuji	 Yoshizawa	 &	 Shun	 Ichi	 Amari.	 1994.	 Network	
Information	 Criterion—Determining	 the	Number	 of	Hidden	Units	
for	 an	 Artificial	 Neural	 Network	 Model.	 IEEE	 Transactions	 on	
Neural	Networks	5(6).	865–872.	doi:10.1109/72.329683.	

Pustejovsky,	 J	 &	 a	 Stubbs.	 2013.	 Natural	 language	 annotation	 for	
machine	 learning.	 Vasa.	 doi:1332788036.	 http://it-
ebooks.info/book/681/%5Cnpapers3://publication/uuid/906A92
2E-DE39-4CAB-8067-F222D065ACEF.	

Ripley,	 Brian	 D.	 1996.	 Pattern	 Recognition	 and	 Neural	 Networks.	
Analysis.	 Cambridge:	 Cambridge	 University	 Press.	
http://www.stats.ox.ac.uk/pub/PRNN/.	

Ritt,	 Nikolaus.	 1994.	 Quantity	 adjustment:	 Vowel	 lengthening	 and	
shortening	 in	 Early	 Middle	 English.	 (Cambridge	 Studies	 in	
Linguistics).	Cambridge:	Cambridge	University	Press.	

Ritt,	Nikolaus,	Christina	Prömer	&	Andreas	Baumann.	2017.	Evolution	
of	Consonant	Clusters	in	English	(ECCE):	a	diachronic	phonotactic	
database.	 Vienna:	 Department	 of	 English	 and	 American	 Studies,	
University	of	Vienna.	ecce.acdh.oeaw.ac.at	(30	October,	2017).	

Schmidhuber,	 Jürgen.	 2015.	 Deep	 Learning	 in	 neural	 networks:	 An	
overview.	 Neural	 Networks	 61.	 85-117.	
doi:10.1016/j.neunet.2014.09.003.	

Starčević,	 Attila.	 2006.	 Middle	 English	 Quantity	 Changes	 —	 Further	
Squibs.	The	Even	Yearbook	7.	1–37.	

Team,	R	Development	Core	&	R	R	Development	Core	Team.	2017.	R:	A	
Language	and	Environment	for	Statistical	Computing.	R	Foundation	
for	 Statistical	 Computing.	 Vienna,	 Austria:	 R	 Foundation	 for	
Statistical	 Computing.	 doi:10.1007/978-3-540-74686-7.	

157	 Machine	learning	in	diachronic	corpus	phonology	

http://www.r-project.org.	
Venables,	 W	 N	 &	 B	 D	 Ripley.	 2002.	Modern	 Applied	 Statistics	 with	 S	

Fourth	 edition	 by.	 World.	 Vol.	 53.	 doi:10.2307/2685660.	
www.stats.ox.ac.uk/pub/MASS4/VR4stat.pdf.	

Wang,	 William	 &	 James	 Minett.	 2005.	 The	 invasion	 of	 language:	
Emergence,	change	and	death.	Trends	in	Ecology	and	Evolution	20.	
263–269.	

Zaki,	 Mohammed	 J	 &	Wagner	Meira.	 2014.	Data	mining	 and	 analysis:	
Fundamental	 concepts	 and	 algorithms.	 New	 York:	 Cambridge	
University	Press.	
	

