From bedrock to alluvium: Considerations on human-lithic resource interaction

Zsolt Mester1,2, Norbert Faragó1

1. Institute of Archaeological Sciences, Eötvös Loránd University, Múzeum krt. 4/B, 1088 Budapest, Hungary. Email: Z. Mester: mester.zsolt@tk.elte.hu, N. Faragó: farago.norbert@tk.elte.hu
2. UMR 7194 Histoire Naturelle de l’Homme Préhistorique, CNRS/MNHN/UPVD, Institut de Paléontologie humaine, 1 Rue René Panhard, 75013 Paris, France

Abstract:

Although lithic raw material provenience studies in Hungarian archaeology have started in the late 1970s, little attention has been paid to the methods prehistoric people with which acquired these raw materials for tool production. With our palaeoethnological approach, we investigate the relationship between human groups and the world surrounding them, aiming to recognize which environmental factors played a role in their lithic raw material economy and tool production. Prehistoric people weighed a range of such factors against each other when deciding about the utilization of a lithic raw material source. The occurrence-source-archaeological site (OSA) model presented in our article helps to describe the interaction between siliceous rock resources and humans. Any place where stone suitable for knapping can be found is considered to be an occurrence. If the lithic raw material from an occurrence is found in the archaeological material, we call it a source, as it was utilized by humans. All places where remains of human activity are found are usually considered archaeological sites. Siliceous rock occurrences are considered raw material sources with a long history prior to human interaction, travelling from the original bedrock to alluvial deposits, due to the geologic-geomorphologic processes of formation, transformation, and transport. The characteristics, of these occurrences, including location, determine not only the distance of transportation but also the quality and condition of the blocks available. Based on these assumptions our research has two aims: to locate lithic raw material occurrences available for prehistoric people and to recognize their decisions about extraction. For the first one, we mapped occurrences of several siliceous rocks in the region. To reconstruct lithic raw material utilization and preferences, we conducted a techno-economic analysis. We studied two areas and their characteristic lithic raw materials in northern Hungary: limnosilicite from the foothills of the Mátra mountain range (Mátraalja), and Buda hornstone or chert from the Buda Hills.

The utilization of both materials is documented at archaeological sites of several prehistoric periods. Both rocks occur in the study areas at several locations that can be considered prehistoric extraction sites. According to Turq’s source area typology, allochthonous sources are not present, but primary and secondary autochthonous as well as sub-allochthonous types have been identified in both areas. However, the exploitation of primary autochthonous limnosilicites could not be demonstrated in the Mátraalja. At the moment, the exploitation of secondary autochthonous and sub-allochthonous sources can be hypothesized for all concerned prehistoric periods.
Keywords: siliceous rock occurrences; lithic raw material sources; OSA model of interaction; Palaeolithic; Neolithic; northern Hungary

1. Introduction

Mineralogical identification of stone tools has been published since the very beginning of Hungarian Palaeolithic research; moreover, the geological occurrence of the given rock type was also indicated in some cases (Dienes 1968; Kadić 1916: 231-235; Vendl 1940). However, except for some special siliceous rocks (e.g., Vértes & Tóth 1963), lithic raw material sourcing started only in the late 1970s, including excavations of prehistoric quarries (Bácskay 1981; 1995; Biró 1984; 1995; Biró & Pálosi 1985; Gábori-Csánk 1988; Simán 1995a; 1995b). Following the international conference on flint mining and lithic raw material identification, held in Budapest and Sümeg in 1986 (Biró 1986; 1987), a large comparative raw material collection (Lithotheca) was established in the Hungarian National Museum in Budapest, aiding provenience studies at archaeological sites (Biró & Dobosi 1991; Biró et al. 2000). The past decades witnessed intensive fieldwork and the enrichment of lithothecas with a large amount of data produced by different chemical and physical methods (Biró 2004).

However, little attention has been paid to the anthropological point of view: how prehistoric people acquired the raw materials for their stone tool production. K. T. Biró’s overview (2004) contains generalized statements on this topic, encompassing the long period from the Early Palaeolithic to the Middle Neolithic. These generalizations originated partly in summarized conclusions of international publications, and partly from her studies of Neolithic sites and lithic assemblages. Although numerous well-established examples were already published abroad (e.g., Andrefsky 1994; Féblot-Augustins 1990; 1997; 2009a; Geneste 1988; 1989; Loodts 1998; Perlès 1990), detailed lithic technological analyses to understand past human behaviour in raw material procurement and processing strategies have been missing in Hungarian prehistoric archaeology until the middle of the 2000s. Hungarian scholars usually interpreted lithic economy based on calculations of the distances between archaeological occurrences and geological sources (Biró 2004; 2009; Dobosi 1997; 2009; Markó 2009; Simán 1991a; 1991b). However, the peculiar raw material composition at the Andornaktálya site needed a more complex, technology-based analysis (Kozłowski & Mester 2003; Mester 2009; Mester & Kozłowski 2014). Our study of this assemblage convinced us that for the reconstruction of prehistoric raw material economies we must shift from the “provenience approach” to the “palaeoethnological approach” (Mester et al. 2012: 282). The first approach focuses on the geological source and its distance from the human settlement. To calculate the distance, this approach generally compares raw materials found at archaeological sites to provenanced specimens in already existing databases and lithothecas. The second approach investigates the knapping activity at a given archaeological site. To understand technical behaviour, including procurement strategy, it is necessary to know the petrographic conditions and raw material accessibility in a given region (Turq 2000: 98-141; 2005). During our field surveys at various siliceous rock outcrops, supported by the International Visegrad Fund in 2011-2012, we observed interesting situations which motivated us to launch a research program aiming at studying raw material sources with a complex approach (Mester 2013; Mester & Faragó 2013; Mester et al. 2012).

2. Theoretical considerations and methodology

The theoretical and methodological background for our research program is inspired by the French school of lithic technology engaged with the investigation of human behaviour
since the 1950s (Audouze 1999; Audouze & Karlin 2017; Perlès 2016; Texier & Meignen 2012). The main aim of this scientific approach is to better understand prehistoric people, their goals and motives, through the evidence of their activities in the social context (Tixier 2012: 69-132). All these activities form the technical system of the human group or society, of which raw material procurement and stone tool production are components (Geneste 1988; 1991; Lemonnier 1983; 1986; Mester 2019).

2.1. Occurrence versus raw material source

The palaeoethnological approach in lithic studies is concerned with the lifeways of prehistoric groups, in a similar manner as anthropologists observe contemporaneous societies. Therefore, we are interested in their relationship to their surrounding world. In other words, we investigate which elements of their natural environment had played a role in their life strategies as resources, including lithic raw material economy and tool production.

From an anthropological point of view, the prehistoric acquisition and use of raw materials are influenced by a range of factors. Without being exhaustive, these are 1) availability and accessibility of outcrops, 2) exploitability of the sources, 3) appropriateness of the raw material.

1) The availability means that siliceous rock outcrops or other forms of potential lithic raw material sources are present in the territory the human group inhabits. Based on ethnological analyses, the territory is the culturally determined organization of the physical space as well as the representation of the symbolic space within which the complex relations of the known world are being managed (Bracco 2001; Howey & O’Shea 2006). In our actual scope, the territory of a prehistoric group means the physical space which provides all resources necessary for their survival (in a wider sense). For hunter-gatherer groups, the size of the territory depends on the distribution of natural resources and the exploitation strategy of the group (Binford 1980; 2002: 109-143). The geologic and geographic properties of the region determine resource density, especially lithic raw material occurrences. Hunter-gatherers directly exploit their territory while foraging, as has been demonstrated in Upper Palaeolithic (Djindjian 2009; 2012) and ethnoarchaeological contexts (Beyries 1997; Binford 2002: 109-143). In contrast, a farming community needs complementary natural resources beyond their limited habitation and cultivation area, to secure the resources missing from there. From our point of view, this area constitutes the virtual territory of a farming community, virtual in terms of being independent of the landscape regularly cultivated and inhabited by the community (Mester & Rácz 2010: 24; Mester et al. 2012: 278). Analyses of lithic assemblages from Neolithic sites in the lowland areas of the Pannonian basin (Great Hungarian Plain) demonstrated the use of lithic raw materials of the surrounding mountainous areas (Biró 1998a; Faragó 2016; Szakmány et al. 2011).

The accessibility of lithic outcrops is a complex problem. On the one hand, there are environmental factors that can temporarily or periodically cover or even uncover the outcrops (ice, snow, water, vegetation). In a longer time frame, erosional processes form the landscape, rendering outcrops available or unavailable (e.g., Pereira & Benedetti 2013). On the other hand, human factors might have determined accessibility. Hunter-gatherer land-use strategies, including mobility patterns in relation to the organization of different tasks (Binford 1979; Turq 1996) or seasonality (Richter 2006), can result in overlooking available raw material sources in the foraging territory. Regarding the accessibility of distant sources, annual or seasonal long-distance migrations (Binford 1982; Lengyel 2018), as well as regular intergroup contacts (Mester & Kozlowski 2014) presented opportunities for access. At least from the Upper Palaeolithic onward, exchange networks had been established between communities (Allard & Denis 2021; Féblot-Augustins 1999; Gamble 1999: 268-416; Whallon 2006). In the
Neolithic, a steady supply system became an important avenue for accessibility to raw materials or even products (Lech 2003).

2) The exploitability of an occurrence depends on technical, economic, and organizational factors. According to the physical properties of the occurrence (with its geologic and geomorphologic context), the acquisition of siliceous rock needs the application of different techniques, from simple collecting on the surface to mining (Fober & Weisgerber 1981). These techniques require distinct toolkits and know-how at the disposal of the community. Opening quarry pits and other techniques for raw material extraction are documented from the Palaeolithic era already (Barkai et al. 2002; Kozlowski 1991; Petraglia et al. 1999; Vermeersch 2005). Flint mines requiring more complex technical and social investments are known from the Neolithic period onward (Weisgerber et al. 1981: 32-213). Considering the distance between the locations of the source and use, procurement also could pose logistical and organizational problems. For optimal exploitation, the spatial aspect of the raw material economy must have been organized (Bonjean & Otte 2004; Geneste 1988; 1989; Miller 1997; Otte et al. 2001; Stout 2002). Moreover, the available or expected quantity of the siliceous rock at an outcrop must have played a crucial role in the decision about exploitation.

3) The appropriateness of raw materials is a multifaceted issue. To decide whether a siliceous rock type is useful for tool making is in strict relation to the real-life situation. When a prehistoric knapper decided to make a tool for any purpose, it is necessary to choose the corresponding tool idea and the related technical knowledge to apply. However, the manufacture of the artefact had been constrained by the environment (e.g., quality and quantity of the available raw material), tradition (e.g., customs, accepted or prohibited solutions), and the body of the knapper (e.g., personal skills and knowledge) (Inizan et al. 1999: 15; Mester 2019: 259; Tixier 1980; 2012: 40-41). The magnitude of these constraints also depends on the real-life situation: is it vital to solve the problem or not so much. On the level of the technical system of the group, all types of rocks are considered appropriate raw materials which suit the technical behaviour related to tool production.

All these factors were weighted by prehistoric knappers to decide about occurrences as being a potential raw material source or not. The decision might not seem to be logical from an economic point of view (according to our modern understanding), but it must have been logical from a social or cultural point of view (according to their understanding) (Király et al. 2020; Mester & Tixier 2013; Perlès 2009).

2.2. Raw material sources and modes of acquisition

Siliceous raw material sources occur in many forms in the landscape, carrying their particular histories before human exploitation, from the original bedrock in which they were formed, to the alluvial deposits (Delvigne et al. 2019: 94-96, fig. 2). Each occurrence represents a stage of this rock biography resulting from geologic-geomorphologic processes of formation, transformation, and transport. Four types of raw material sources can be distinguished by the phases of a general sequence of transformation (Turq 2000: 106-107; 2005). The first source type applies to the raw material embedded in the parent rock in the original context of the formation (primary autochthonous source). The second type is a source where the raw material is already moved by erosion and accumulated in the vicinity of the original primary autochthonous source but still in contact with the eroded material of the parent rock, in a slope deposit or a stream bed (secondary autochthonous source). The third type is located in a weathered rock or colluvium in a new geological context due to transformation and re-deposition by erosion (sub-allochthonous source). The fourth type is sources consisting of eroded and accumulated raw material that had been transported long
distances by water courses or ice sheets and deposited with fluvial or glaciofluvial sediments (allochthonous source).

For the interpretation of the lithic assemblage at an archaeological site, distinguishing between these types of origin is very important. The type of source affects not only the distance of transportation but also the quality of the extracted blocks. Effects of weathering may deteriorate a material of originally good quality in the secondary autochthonous or sub-allochthonous source, while an originally medium-quality material can become better in the allochthonous source because its more homogenous parts had been sorted out during the transport by water or ice sheets.

These source types provide different conditions for getting raw material blocks. At a primary autochthonous source (and eventually, at a sub-allochthonous source), the acquisition certainly needs special extracting techniques. According to the hardness of the embedding rock it requires lower or higher energy investment, but it results in a probably considerable quantity of acquired raw material. At a secondary autochthonous source (and eventually, at a sub-allochthonous source), both simple collecting and extracting can be applied. If the blocks are situated on the surface or slightly embedded in the loose sediment, they are easy to get. The more embedded blocks may require more digging, but even in this case, the extraction requires less energy as at a primary autochthonous source. Taking into account the accumulation of the eroded material, a secondary autochthonous source probably yields a higher number of blocks as well. At an allochthonous source, raw material acquisition is similar to the former one: simple collecting on the surface or eventually, digging. However, according to our own field experience, it should consume a considerable amount of time to get a limited number of blocks because the fluvial or glaciofluvial deposits contain all types of rocks occurring within the reach of the transporting agent.

2.3. Methods

Based on these assumptions our research has two aims: to reconstruct the locations of lithic resources available for prehistoric people who lived in a region in a given period and to recognize people’s decisions about their utilization with their behavioural background.

To reach the first objective, the task is to make a comprehensive inventory of siliceous rock occurrences in the region. The basic methodology is widely known and employed: field prospection and sampling of the geological formations which potentially contain siliceous rocks according to geological maps (e.g., Féblot-Augustins 2009b: 170-171; Turq 2000: 33-35). Observations during archaeological surveys about the presence of blocks of siliceous rock round out the picture. On these occasions, it proved to be useful to check places marked on the map by geographical names containing elements like cherty or flinty. Several times these names indicated the presence of scattered raw material blocks (potential sub-allochthonous source). Within the abovementioned framework of rock biography and landscape history, a GIS database has been created with the registered occurrences, the geomorphologic and pedologic characteristics of the region (Dövényi 2010) and the geological map of the Mining and Geological Survey of Hungary (Gyalog 2005). Analyses of these overlapping spatial data resulted in locations to check in the field to identify further potential raw material occurrences in the studied region.

Each occurrence is characterized according to source type and sampled for siliceous rock diversity. The samples are stored in the reference collection at the Institute of Archaeological Sciences of the Eötvös Loránd University in Budapest (ELTE), established in 2011 (Mester et al. 2012). The basic petrographic characterization of the samples is usually conducted at a macroscopic and a microscopic level (water immersion) (e.g., Brandl 2014: 39-40; Féblot-Augustins 2009b: 167-168; Přichystal 2013: 43-45; Turq 2000: 35-36). Thin section
examination and geochemical analyses (e.g., Brandl 2014: 40) are in progress or planned for the future.

To reconstruct the decisions and raw material use by prehistoric people, a techno-economic analysis is applied (Geneste 1988; Loodts 1998; Turq 2000: 39-43), based on the technical reading methodology (Inizan et al. 1999: 89-100; Tixier 2012: 115-132). The key concept behind this reconstruction is the notion of operational chain or chaîne opératoire (Audouze & Karlin 2017; Karlin et al. 1991; Mester 2019; Pelegrin et al. 1988; Sellet 1993). The identification of the utilized raw materials was done with the help of the ELTE reference collection, together with the source type. In the case of archaeological material without identified raw material sources, the type of the source is difficult to recognize. However, utilized raw material blocks have their autobiography recorded in the microstructure of the rock. A new analytical approach, based on taphonomical and petroarchaeological observations at different scales, allows decoding the various stigmata on the surface and in the crystallization of stone artefacts originating from complex physicochemical and mechanical phenomena during post-genetic processes (Fernandes & Raynal 2006; 2010; Fernandes et al. 2007).

2.4. A model for human-lithic resource interaction

As it was stated above, the palaeoethnological approach aims at reconstructing people living in the past through their activities. As a consequence, when we are talking about raw material procurement or economy, it is a matter of interaction between humans and the natural lithic resources. Following the above-listed factors (section 2.1.), which are all prone to change with time, this interaction has a certain dynamism. The palaeoethnological approach must manage this dynamism. For this purpose, we constructed a model which serves as a theoretical framework, a descriptive tool, and terminology (Table 1).

Table 1. Aspects of the human-lithic resource interaction.

<table>
<thead>
<tr>
<th>lithic resource</th>
<th>occurrence</th>
<th>source</th>
<th>archaeological site</th>
</tr>
</thead>
<tbody>
<tr>
<td>interaction</td>
<td>non-existing</td>
<td>indirect</td>
<td>direct</td>
</tr>
<tr>
<td>human activity</td>
<td>no</td>
<td>use</td>
<td>exploitation</td>
</tr>
<tr>
<td>archaeological</td>
<td>nothing</td>
<td>presence in lithic assemblage</td>
<td>local or nearby traces</td>
</tr>
<tr>
<td>evidence</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

From the perspective of human activity, the human-lithic resource interaction can be: direct, indirect, or non-existing. This third category is also important because the absence is meaningful for reconstructing human behaviour and decisions: people had hardly any contact with the lithic source, though it existed at the time and context concerned. It is equivalent to the term of negative evidence (témoin négatif) introduced by A. Leroi-Gourhan to palaeoethnographic analysis at the Magdalenian site of Pincevent in France (Leroi-Gourhan & Brézillon 1972: 323). It has to be analyzed and demonstrated whether a decision (economic, technical, cultural, or any other) or a certain condition (unknown resource, not frequented place, or any other) or a combination of those explains the situation. Direct interaction means that human activity had been present more or less regularly at the lithic source. Conversely, indirect interaction is manifested in the proof of contact between the lithic resource and humans without traces of this contact at the raw material source. Regarding human activity, direct interaction is indicated by visible traces of extraction or treatment of the siliceous rock at its source, while indirect interaction is testified by the utilization of the siliceous rock as raw material, but without traces of extraction or treatment at the source. Examples for the
latter are long-distance raw material accessed through intergroup contact or raw material blocks collected from the ground without on-site testing. Of course, collecting is a human activity at the source in this latter case but without any trace left behind, it cannot be documented. Archaeologically, direct interaction is evidenced in features and objects (e.g., extraction pit, mining tool, workshop material, knapping waste heap) at or nearby the raw material source. Indirect interaction, *i.e.*, the use of a given siliceous rock is proven by its presence in any form (e.g., raw material block or fragment, core, blank, retouched tool, waste) in the lithic assemblages from archaeological sites. Based on these differences in human-lithic resource interaction, the raw material sources should also be classified into three categories (Table 1): source without interaction is only an occurrence because humans did not utilize it as a raw material (confer in section 2.1.); raw material source with indirect interaction is a source because people used it but we are lacking traces of extraction or treatment on-site, and finally the source with direct interaction is an archaeological site due to direct traces of local human activity. The relationship between these three categories of lithic source locations is clear (Figure 1): certain occurrences are sources and certain sources are archaeological sites as well, while the rest of the archaeological sites are not sources. An archaeological site might be located next to a lithic raw material source but if the people did not exploit it, this resource remained an occurrence.

The usefulness of the occurrence-source-archaeological site (OSA) model became evident when we applied it to the abovementioned dynamism. Each locality in the study of human-lithic resource interaction can be attributed to one of the three categories according to

Figure 1. The occurrence-source-archaeological site (OSA) model. Occurrence (O): available siliceous rock resource without human utilization; Source (S): an occurrence of a siliceous rock used by humans, but without traces of human activity at the site; Archaeological site (A): locality with human activity related to raw material acquisition or use. (CAD by N. Faragó).

Figure 1. Le modèle gîte-source-site archéologique (OSA). Gîte (O): ressource de roche siliceuse qui est disponible mais inutilisée par les humains; Source (S): gîte d’une roche siliceuse utilisé par les humains mais sans activités sur place; Site archéologique (A): localité avec activité humaine liée à l’acquisition ou l’utilisation de matières premières. (DAO: N. Faragó)

The usefulness of the occurrence-source-archaeological site (OSA) model became evident when we applied it to the abovementioned dynamism. Each locality in the study of human-lithic resource interaction can be attributed to one of the three categories according to
its status in the studied period. When this status had been modified, the attribution of the locality (i.e., its place in the model) also changed immediately. For example, when a new human group arrives in a region - such as modern humans in the Early Upper Palaeolithic (Mellars 2011) or the first farmers during the Neolithisation of the Carpathian Basin (Kozłowski 2004) - they do not possess knowledge about local raw material sources. All available and accessible siliceous rocks are occurrences to these people until they discover the region and start to use some of them. The occurrences of the utilized rocks become sources to the human group, or even archaeological sites if they establish workshops or extraction sites. As the discovery of the region advances, the group continues to use the already known raw materials but they may no longer be able to acquire some of them directly. However, the occurrences of these raw materials remain sources. After the group successfully adapted its raw material economy to newly discovered sources and leave the former ones, the previous sources become occurrences in the OSA model. The model functions in the same way independent of the scale of the study. According to the scope of the analysis, different types of changes or the role of different changing factors can be described with the help of the model. For example, the role of cultural-technological changes along the stratigraphic sequence of an archaeological site (Féblot-Augustins 2009c; Mester 2004a; Perlès 2004; 2013), the role of changes in climate, environment, and subsistence strategies in a greater geographic region and over a longer period (Lengyel 2018). The model also allows studying the dynamism in the spatial organization of the raw material economy of a cultural unit during a period, as well as the pattern of exploitation of the sources in a region by contemporaneous communities (Oliva 2009). Finally, our scientific knowledge about a respective region, cultural entity, or period also changes over time, along with the research, which has its dynamism.

3. Study areas and materials

In 2017, we started two new investigations; one project was due to a research grant from the National Research, Development and Innovation Fund, and the other had been a scientific collaboration with the Budapest History Museum - Acquincum Museum. These allowed us to advance in two small regions with different geological backgrounds and different raw materials which were used from the Palaeolithic to the Bronze Age.

The first study area is the Mátraalja and Bükkalja regions, being the southern foothills of the Mátra and Bükk mountains respectively, and the second one is the Buda Hills, being the western part of Budapest, capital of Hungary. In this paper, we discuss the Mátraalja region and compare the results from there to those obtained from the southern part of the Buda Hills (Faragó et al. 2018) (Figure 2). Our conclusions are discussed using the OSA model.
3.1. Mátraalja region

The Mátraalja geographic region is located at the southern foothills of the Mátra Mountains in Northern Hungary, extending over about 450 km2 between the valleys of the rivers Zagyva (to the west) and Tarna (to the east), tributaries of the river Tisza (Baráz & Kiss 2010; Dövényi 2010: 723-729) (Figure 3). The Mátra Mountains constitute a part of the North Hungarian Range which belongs to the Inner Western Carpathians. It has a complicated tertiary volcanic structure and history which took place in the area of the Middle Parathetys (Pelikán 2010; Zelenka 2010), in the framework of the Neogene to Quaternary volcanism of the Carpathian-Pannonian Region, in strong connection to the geodynamic evolution of the area (Harangi 2001; Harangi & Lenkey 2007; Harangi & Lukács 2019; Seghedi et al. 2005). In the western part of the mountains, andesite and rhyolitic tuff can be found which were formed during the Carpathian and Badenian stages of the Early and Middle Miocene (from Burdigalian to Seravallian) on the border of the sea. In collapsed craters, in connection with post-volcanic activity, thick diatomaceous earth had been deposited in a limnobrackish basin near Szurdokpüspöki and Gyöngyöspata villages (Szurdokpüspöki Formation). This diatomite layer complex can be subdivided into an upper part (yellowish-white) and a lower part (greyish). The diatomite layers alternate with limnoopalite layers, generally having a very varied and vivid colour. The middle-southern part of the mountains has a similar genetic history, where mainly pyroxene andesite with rhyolite intrusions from the Lower Badenian (Langhian) can be found. The hydrothermal activity resulted in a large body of supplementary andesitic rocks with jasper, chalcedony and quartzites with different colour variants from white, bluish-white to lilac and red, and geyser cones and terraces in the vicinity of
Gyöngyőspata, Gyöngyöstarján, Gyöngyösoroszi, and Gyöngyössolymos villages (Gyöngyőspata Limnoquartzite Member of the Szurdokpüspöki Formation). The southern edge of this foothill region is covered by colluvial clay sediments mostly from the Pannonian (from Tortonian to Piacenzian). Descending southwards, to the Great Hungarian Plain, Pleistocene slope sediments dominate the landscape.

Figure 3. Map of the Mátra Mountains with the geological formations containing siliceous rocks (green patches), according to the geological map of the Mining and Geological Survey of Hungary (https://map.mbfsz.gov.hu/fdt100/), and the occurrences (yellow circles) already registered into the database of the Institute of Archaeological Sciences of Eötvös Loránd University, Budapest. 1: Szurdokpüspöki-Diatomabánya; 2: Gyögyőspata-Tilalmas-tető; 3: Gyöngyöstarján-Füledugó-bánya; 4: Gyöngyöstarján-Köves-tető; 5: Gyöngyöstarján-Tűzköves-dűlő; 6: Gyöngyösoroszi-Bánya-domb; 7: Gyöngyösoroszi-Dögkút; 8: Gyöngyössolymos-Lilakő-bánya; 9: Gyöngyössolymos-Cserkő-bánya; 10: Domoszló-Vécsi-part. (CAD by N. Faragó)

This Tertiary post-volcanic silicification formed a group of potential raw materials, the main characteristic of which is great petrographic variability. These rocks were identified as quartzites, chalcedonies, chalcedony opals, etc., according to their observable characteristics in thin sections, igniting a never-ending terminological debate (Biró 2010). Following A. Přichystal (2010; 2013: 48-50), this group of siliceous rocks is named limnosilicites (limnic silicites). Within the group, Přichystal distinguishes geyserite formed by thermal springs.
activity and limnic silicate originating in freshwater limnic (lake) environments. Although this distinction is important from a geologic-petrographic point of view, we use the term of limnosilicate for both types of rocks because most of the time, the conditions of formation of raw materials recovered in archaeological context are not known (Mester & Faragó 2016).

3.2. Southern part of the Buda Hills

The western part of Budapest is a hilly landscape on the right side of the river Danube, named Buda Hills, which represents the north-eastern end of the Transdanubian Range (western Hungary) (Figure 4). Together with the Alps, the Dinarides, and the Western Carpathians, the Transdanubian Range belongs to the ALCAPA Mega-unit which broke off of the African Plate and was formed by the Alpine orogeny during the Late Mesozoic and Cenozoic (Budai 2009; Haas 2012: 1-102). The Buda Hills are built up of dolomite and limestone, formed on the Tethyan shelf in the course of the Triassic (Budai & Maros 2016; Wein 1977: 10-23). Due to tectonic movements, the shallow marine platforms broke up during the Carnian, calcareous and siliceous mud was deposited between the blocks. From these sediments were formed the cherty limestone and the cherty dolomite (Mátyáshegy Limestone Member and Sashegy Dolomite Member of the Mátyáshegy Formation in the northern and southern parts of the area respectively). New palaeontological data suggest that some parts of the cherty dolomite in the southern zone could be dated to the Early and Middle Norian (Karádi et al. 2016). In the Late Eocene, a transgression reached the area, where breccia and conglomerate were formed from the dolomite of the rocky cliffed coasts due to strong wave action (Budai & Maros 2016; Wein 1977: 24-29). Chert nodules can be found also in the blocks of Upper Eocene breccia-conglomerates. During the Badenian of the Middle Miocene (Langhian and Seravallian), the sea invaded the surroundings of the Buda Hills which stood out like an island. In the Pliocene, parallel to the filling up of the Lake Pannon, the uplift of the Buda Hills took place. This process resulted in the development of the present morphology. The increased relief energy caused the increase of the linear erosion and the formation of the present valley system of the area. Debris was transported from the inner parts of the mountains to the Danube bed and its alluvial plain. The foothill stretching out to the south is covered by Pleistocene slope sediments and loess-like sediments.

The existence of the Upper Triassic chert in the Buda Hills was demonstrated by geologists in the first half of the last century (Károly 1936). The geological occurrences of the cherty dolomite contain grey or brownish-grey chert nodules and lenses, distributed parallel to the layers of the dolomite. This rock is named “Buda hornstone” in the archaeological literature (Biró 1998a: 32; Biró 2002a; Biró & Dobosi 1991: 123, 136-137; Faragó et al. 2018).
4. Results

Concerning the two aims, the research program is in progress. In this paper, we report the state of art with a focus on the problem of the raw material sources and their possible acquisition. For the characterization of the occurrences from the palaeoethnological viewpoint, the application of Turq’s categories of the types of sources proved to be fruitful.

4.1. Possible sources of the Mátraalja

Limnosilicites of the Szurdloküspöki Formation have a fine microcrystalline structure. Detailed petrographic characterization of the samples of this raw material collected on the field has yet to be conducted. Macroscopically, they are of varied colours, from whitish-yellow to dark green and brown (Figure 5: B). Very often the colour is vivid which is probably linked to the accompanying metal ore deposits of the same volcanism (Zelenka 2010). Some varieties have stripped or mottled patterns according to the silicified sediments.
There are translucent variants too. Biró & Dobosi (1991: 20-32) attributed their samples, coming from the localities of the same area to limnic quartzite, limnoopalite, geyserite, or jasper. According to Varga et al. (1975: 218-227, 441), the rocks originating from geysers consist of chalcedony-opal beds, coloured, often banded, and celled, which contain various quantities of tuff debris admixed to the siliceous material (traces of nearby volcanic eruptions) or non-identifiable plant remains (lake environment).

The quality of the limnosilicite varies from considerably bad to excellent according to its composition and structure. Some variants are very homogenous and translucent similar to flint, difficult to distinguish macroscopically in archaeological material. Other variants contain inclusions, inhomogeneities, cracks, being almost unfit for knapping. Even in the case of inferior variants, techno-economic considerations about future use, great quantity and easy accessibility of the raw material could result in an intensive procurement. The considerable proportion of block fragments, abandoned cores, unused blanks, and waste in a lithic assemblage permits the assessment of such a situation.

In the field, limnosilicates occur in layers of different thicknesses, from 5 to 30 cm. Their sequences probably form big bodies of siliceous rocks. At several spots along the border of the mountains, these bodies crop out in hilltop positions, covered by only a thin soil layer. On the Köves-tető hill (2 km to the north of Gyöngyőstarján) a small modern quarry has opened the limnosilicite body. In this case, we cannot date archaeologically the debris of human activity. In contrast, at a similar occurrence on the Bánya-domb hill (1.5 km to the northwest of Gyöngyősoroszi, Figure 5: A) we observed pieces wearing negatives of removals among the huge amount of natural fragments and debris (Figure 6). Until now, we did not find traces of prehistoric human extracting activity. Similarly, on the Tilalmas-tető hill (3 km to the east of Szurdokpüspöki), where the surface of an orchard is covered by limnosilicate blocks and debris due to agricultural work, we collected flakes and fragments of raw material blocks showing clear traces of knapping. These artefacts could be attributed to Prehistoric times. It is interesting that in the valley of the Száraz-patak stream, just below the hill at a distance of hundred meters from the former occurrence, we could not find any traces of human activity, however, the layers of the same limnosilicite have been uncovered by the cutting in of the valley.

Another type of occurrence was observed at Tűzköves-dűlő (“Cherty field”) in the eastern fringes of Gyöngyőstarján, where limnosilicate blocks, as well as jasper and volcanic blocks, were scattered in a vineyard brought to the surface by agriculture. No human impact has been detected on the blocks. This field is located at 250 m a.s.l. at a distance of 2 km to the south of the top of the mentioned Bánya-domb hill (330 m a.s.l.), and considered to be a long slope of the hill.
Figure 5. Limnosilicite of the Mátra Mountains from the Bánya-domb hill. A: outcrop on the top of the hill; B: raw material blocks. (Photo and CAD by Z. Mester and N. Faragó)

Figure 5. Limnosilicite de la montagne de Mátra provenant de Bánya-domb. A: l'affleurement au sommet de la colline; B: blocs de matière première. (Cliché et DAO: Zs. Mester et N. Faragó)
At the Mátraalja, limnosilicates formed in great bodies of siliceous rocks according to the geological map. Practically, there is no parent rock as in the case of chert or flint nodules in Jurassic or Cretaceous limestone. For this reason and in this sense, there is no possible primary autochthonous source according to Turq’s category. However, the outcrops of these bodies in hilltop positions, as we reported, should be classified as such. Streams or derasion processes cut valleys in the rock bodies, hence the limnosilicate beds became accessible. In both cases (i.e., on the hilltop and in the valley), the raw material has to be extracted by quarrying methods. However, it is very difficult to cut blocks from the rock body even with modern tools, as we have experienced at an outcrop of the Carpathian radiolarite in Streženice, western Slovakia (Mester & Faragó 2013: fig. 6). Another possible way to extract blocks is the use of fire-setting for quarrying purposes in volcanic raw material contexts (Stout 2002: 697). Prehistoric use of this extraction method for limnosilicate has been hypothesized at the Avas Hill raw material source in Miskolc, at the eastern fringe of the Bükk Mountains (northeast Hungary) (Tóth 2016). In the Mátraalja, we did not find archaeological evidence of this extraction method, although viticulture could cover its traces. However, quarrying is not necessarily confined to limnosilicate blocks on eroded hilltops. During the Pleistocene, frost splitting also resulted in the fragmentation of the rock surface. Geomorphological field observations in the Mátraalja as well as the related sedimentological and micromorphological analyses proved the presence of permafrost in the glacial periods of the Pleistocene (Horváth et al. 2002; Michéli & Mindszenty 2002). Because the raw material
blocks were already disturbed by erosion, this situation corresponds rather to a secondary autochthonous source according to Turq’s categories. The third kind of source is represented by scattered limnosilicate blocks in the landscape, as it was documented at Gyöngyöstarján. According to our field prospection, the quasi-overall presence of raw material blocks in foothill areas is also observed at the Bükk Mountains’ piedmont zone. This is due to the formation of planation surfaces along the North Hungarian Range as a result of the continuous uplift of the mountainous area parallel to the subsidence of the basin (Great Hungarian Plain) (Karátson 2006; Pinczés et al. 1993). These occurrences are considered sub-allochthonous sources in Turq’s categorization.

The prehistoric use of these limnosilicates is reported from archaeological sites in the region in Middle Palaeolithic, Upper Palaeolithic, and Neolithic contexts (Table 2, Figure 7). These raw materials occur in other regions too: in the neighbouring Cserhát and Bükk mountains and even in the Great Hungarian Plain, also from Middle Palaeolithic, Upper Palaeolithic, Mesolithic and Neolithic contexts (Table 2; Figure 7). Taking into account their mobility, hunter-gatherer groups of the Palaeolithic and Mesolithic probably exploited the secondary autochthonous and sub-allochthonous limnosilicate sources. Related to certain activities, Neolithic people could also profit from these sources. We do not know any traces of prehistoric limnosilicate quarrying in the area. The freestanding, naturally fragmented blocks at the hilltops were probably easily accessible for prehistoric people. The presence of flakes and core remnants already testified to knapping activity at these sources.

Table 2. Occurrences of Mátra limnosilicates and Buda hornstone at archaeological sites (see Figure 7). BA: Bronze Age; CA: Copper Age; EBA: Early Bronze Age; EN: Early Neolithic; EUP: Early Upper Palaeolithic; LCA: Late Copper Age; LMP: Late Middle Palaeolithic; LN: Late Neolithic; LUP: Late Upper Palaeolithic; MBA: Middle Bronze Age; Mes: Mesolithic; MN: Middle Neolithic; MP: Middle Palaeolithic.

<table>
<thead>
<tr>
<th>No.</th>
<th>Archaeological site</th>
<th>Age</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alattyán-Vízköz</td>
<td>LN</td>
<td>Biró 1998a</td>
</tr>
<tr>
<td>2</td>
<td>Andornaktállya-Zúgó</td>
<td>EUP</td>
<td>Kozłowski & Mester 2003</td>
</tr>
<tr>
<td>2</td>
<td>Andornaktállya-Gyilkos</td>
<td>EUP</td>
<td>Zandler 2012; Mester et al. 2021</td>
</tr>
<tr>
<td>3</td>
<td>Apc</td>
<td>MN</td>
<td>Kaczanowska et al. 2016</td>
</tr>
<tr>
<td>4</td>
<td>Aszód-Papi földek</td>
<td>LN</td>
<td>Biró 1998a</td>
</tr>
<tr>
<td>5</td>
<td>Bia-Öreghegy</td>
<td>MBA</td>
<td>Balogh 1998; Horváth 2012</td>
</tr>
<tr>
<td>6</td>
<td>Bölcske-Vörösgyír</td>
<td>EBA, MBA</td>
<td>Horváth et al. 2000a</td>
</tr>
<tr>
<td>7</td>
<td>Budakalász</td>
<td>LCA, EBA</td>
<td>Balogh 2009; Horváth 2017</td>
</tr>
<tr>
<td>8</td>
<td>Budapest-Albertfalva</td>
<td>CA, EBA</td>
<td>Biró 2002a</td>
</tr>
<tr>
<td>8</td>
<td>Budapest-BEAC</td>
<td>MBA</td>
<td>Horváth 2012</td>
</tr>
<tr>
<td>9</td>
<td>Budapest-Aranyhegyi út</td>
<td>EN, MN</td>
<td>Biró 1998a</td>
</tr>
<tr>
<td>10</td>
<td>Budapest-Csepel, II. Rákóczi Ferenc utca</td>
<td>EBA</td>
<td>Biró 2002a</td>
</tr>
<tr>
<td>11</td>
<td>Budapest-Hollandi utca</td>
<td>EBA</td>
<td>Biró 1991</td>
</tr>
<tr>
<td>11</td>
<td>Budapest-Medve utca</td>
<td>LCA</td>
<td>Biró 1998b</td>
</tr>
<tr>
<td>12</td>
<td>Budapest-Káposztásmegyer</td>
<td>LCA</td>
<td>Biró 1998b</td>
</tr>
<tr>
<td>13</td>
<td>Budapest-Péteri major</td>
<td>MBA</td>
<td>Horváth 2012</td>
</tr>
<tr>
<td>13</td>
<td>(Budapest-)Soroksár-Várhegy</td>
<td>MBA</td>
<td>Horváth 2012</td>
</tr>
<tr>
<td>14</td>
<td>Buják-Szente</td>
<td>EUP</td>
<td>Péntek & Zandler 2014</td>
</tr>
<tr>
<td>No.</td>
<td>Archaeological site</td>
<td>Age</td>
<td>Reference</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>-----</td>
<td>--</td>
</tr>
<tr>
<td>15</td>
<td>Csesztve-Stalák</td>
<td>LN</td>
<td>Biró 1998a</td>
</tr>
<tr>
<td>16</td>
<td>Csongrád-Vidre</td>
<td>MBA</td>
<td>Horváth 2012</td>
</tr>
<tr>
<td>17</td>
<td>Demjén-Pünkösdhegy</td>
<td>EUP</td>
<td>Zandler 2012</td>
</tr>
<tr>
<td>18</td>
<td>Dunáujváros-Kosziderpadlás</td>
<td>MBA</td>
<td>Horváth 2012</td>
</tr>
<tr>
<td>19</td>
<td>Eger-Kőporos</td>
<td>MP, EUP</td>
<td>Zandler 2012</td>
</tr>
<tr>
<td>20</td>
<td>Egerszalók-Kővágó</td>
<td>MP, EUP</td>
<td>Kozlowski et al. 2009</td>
</tr>
<tr>
<td>21</td>
<td>Endrőd 39</td>
<td>EN</td>
<td>Starnini & Szakmány 1998</td>
</tr>
<tr>
<td>22</td>
<td>Érd(-Parkváros)</td>
<td>MP</td>
<td>Mester 2004b</td>
</tr>
<tr>
<td>23</td>
<td>Feldebrő-Bakoldal 1</td>
<td>LUP</td>
<td>Gutay et al. 2016</td>
</tr>
<tr>
<td>24</td>
<td>Fűzesabony-Gubakút</td>
<td>MN</td>
<td>Biró 2002b</td>
</tr>
<tr>
<td>25</td>
<td>Gyöngyöstarján</td>
<td>MP</td>
<td>Gutay et al. 2010</td>
</tr>
<tr>
<td>26</td>
<td>Halmajugra-Szoller-dülő</td>
<td>LUP</td>
<td>Gutay 2016</td>
</tr>
<tr>
<td>27</td>
<td>Hódmezővásárhely-Gorza</td>
<td>LN</td>
<td>Starnini et al. 2007</td>
</tr>
<tr>
<td>28</td>
<td>Hort-Csitár</td>
<td>EUP</td>
<td>Zandler 2010</td>
</tr>
<tr>
<td>29</td>
<td>Igor-Vámpuszta-Galástya</td>
<td>MBA</td>
<td>Horváth 2012</td>
</tr>
<tr>
<td>30</td>
<td>Jászberény 1</td>
<td>Mes</td>
<td>Kertész et al. 1994</td>
</tr>
<tr>
<td>31</td>
<td>Jászfelsőszentgyörgy</td>
<td>LUP</td>
<td>Dobosi 2001</td>
</tr>
<tr>
<td>32</td>
<td>Jásztelek 1</td>
<td>Mes</td>
<td>Kertész et al. 1994</td>
</tr>
<tr>
<td>33</td>
<td>Kakuc-Balladomb</td>
<td>MBA</td>
<td>Horváth 2012</td>
</tr>
<tr>
<td>34</td>
<td>Legénd-Hosszú-földek</td>
<td>EUP</td>
<td>Péntek 2018</td>
</tr>
<tr>
<td>34</td>
<td>Legénd-Káldy tanya</td>
<td>MP</td>
<td>Markó & Péntek 2003</td>
</tr>
<tr>
<td>35</td>
<td>Lovasberény-Mihályvár</td>
<td>MBA</td>
<td>Horváth 2012</td>
</tr>
<tr>
<td>36</td>
<td>Mende-Leányvár</td>
<td>MBA</td>
<td>Horváth 2012</td>
</tr>
<tr>
<td>37</td>
<td>Mezőköves-Mocsolyás</td>
<td>MN</td>
<td>Biró 2002b</td>
</tr>
<tr>
<td>38</td>
<td>Nagykőröös-Földvár</td>
<td>MBA</td>
<td>Horváth 2012</td>
</tr>
<tr>
<td>39</td>
<td>Nagyréde</td>
<td>EUP</td>
<td>Lengyel et al. 2006</td>
</tr>
<tr>
<td>40</td>
<td>Ostoros-Rácpa 1</td>
<td>MP, EUP</td>
<td>Zandler 2012</td>
</tr>
<tr>
<td>41</td>
<td>Öcsöd-Kováshalom</td>
<td>LN</td>
<td>Biró 1998a; Kaczanowska et al. 2009</td>
</tr>
<tr>
<td>42</td>
<td>Pákozd-Vár</td>
<td>MBA</td>
<td>Horváth 2012</td>
</tr>
<tr>
<td>43</td>
<td>Páty-Nagyhegy</td>
<td>MBA</td>
<td>Horváth 2012</td>
</tr>
<tr>
<td>44</td>
<td>Polgár-Csőshalom</td>
<td>LN</td>
<td>Faragó 2016</td>
</tr>
<tr>
<td>45</td>
<td>Solyám-Mátyásdomb</td>
<td>MBA</td>
<td>Horváth 2012</td>
</tr>
<tr>
<td>46</td>
<td>Százhalombatta-Sáncshegy or Százhalomba-Földvár</td>
<td>EBA, MBA</td>
<td>Horváth 2005; Horváth et al. 2000b; Pető et al. 2002</td>
</tr>
<tr>
<td>47</td>
<td>Szécsénke-Berecz-oldal</td>
<td>EUP</td>
<td>Péntek 2015</td>
</tr>
<tr>
<td>48</td>
<td>Szécsény-Ültetés</td>
<td>MN</td>
<td>Biró 1998a</td>
</tr>
<tr>
<td>49</td>
<td>Szegvár-Tűzköves</td>
<td>LN</td>
<td>Biró 1998a</td>
</tr>
<tr>
<td>50</td>
<td>Szigetszentmiklós-Felső Ürge-hegyi dülő</td>
<td>EBA</td>
<td>Péntek & Zandler 2017</td>
</tr>
<tr>
<td>50</td>
<td>Szigetszentmiklós-Údülősor</td>
<td>EBA</td>
<td>Balogh 1992</td>
</tr>
<tr>
<td>51</td>
<td>Szolnok-Tűzköves</td>
<td>LN</td>
<td>Biró 1998a</td>
</tr>
<tr>
<td>52</td>
<td>Tiszaszőlős-Domaháza-pusztá</td>
<td>EN</td>
<td>Domboróczki et al. 2010</td>
</tr>
<tr>
<td>53</td>
<td>Tőszeg</td>
<td>MBA</td>
<td>Balogh 1998; 2001</td>
</tr>
<tr>
<td>54</td>
<td>Türkeve-Terehalom</td>
<td>MBA</td>
<td>Balogh 2001; Horváth 2012</td>
</tr>
</tbody>
</table>
No. | Archaeological site | Age | Reference |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>Vanyarc</td>
<td>LMP, EUP</td>
<td>Péntek & Zandler 2018</td>
</tr>
<tr>
<td>56</td>
<td>Verőcmaros-Magyarkút</td>
<td>LN</td>
<td>Biró 1998a</td>
</tr>
</tbody>
</table>

4.2. Possible sources in the southern part of the Buda Hills

The siliceous rocks embedded into the “cherty dolomite” had been studied for the first time by E. Károly (1936). She described it as *szarukő* which is the Hungarian name for “hornstone.” That is why this raw material is known as the “Buda hornstone” in the Hungarian archaeological literature (Biró 1998a: 32; Biró 2002a; Biró & Dobosi 1991: 123, 136-137; Faragó et al. 2018; Horváth 2017). A. Přichystal (2013: 128) named it “Triassic Buda chert”, and characterized as a very light grey to bluish-grey siliceous material, containing small lenses of chalcedony, hair-like thin cracks, and milky clouded parts, which is not a high-quality raw material because of the cracks inside (Figure 8: B). In her petrographic study of the samples collected during our field surveys, R. K. Péter demonstrated that colour variants display differences in thin sections as well (Faragó et al. 2018: 179-181).

Figure 7. Distribution of the limnosilicites of the Mátra Mountains (triangles) and the Buda hornstone (circles) at archaeological sites in Hungary. For sites see Table 2. (CAD by Z. Mester)

Figure 7. Distribution de limnosilicites de la montagne de Mátra (triangles) et celle de la chaille de Buda (cercles) aux sites archéologiques en Hongrie. Pour les sites voir Table 2. (DAO: Zs. Mester)
Figure 8. Buda hornstone of the Buda Hills from Farkas-völgy 1. A: knapped flakes and fragments of a hammerstone in a supposed pit; B: tested nodules. (Photo and CAD by Z. Mester and N. Faragó)

Figure 8. Chaille de Buda des monts de Buda provenant de Farkas-völgy 1. A: éclats taillés et fragment de percuteur dans une fosse d’extraction supposé; B: rognons testés. (Cliché et DAO: Zs. Mester et N. Faragó)
The use of Buda hornstone by prehistoric people was firstly proven by the fortuitous discovery of several antler mining tools at the Denevér street site next to the Farkasréti cemetery (Biró 2002a: 131; Vörös 1998-1999: 69). Between 1984 and 1987, systematic archaeological excavations were carried out at the extraction site named Budapest-Farkasréti (Gábori-Csánk 1988; Faragó et al. 2018) (Figure 9). Based on archaeological considerations, V. Gábori-Csánk (1988) argued for a Middle Palaeolithic time-frame, although the extracted rock type was not known from archaeological contexts at that time. After the excavations in the 1980s, Buda hornstone outcrops were visited in the course of raw material surveys (Biró 2002a: 131) and sampled for the Lithotheca of the Hungarian National Museum (Biró & Dobosi 1991: 123, 136-137). Due to new systematic field prospections from 2013 onward, F. Cserpák localized ten occurrences in the study area (Faragó et al. 2018) (Figure 4: 1-10). At Rupp-hegy hill and Túzkő-hegy hill, the chert nodules are exposed on the surface in the dolomite. At the other localities, they were found in slope sediments (Figure 8: A). The dolomite embedding the chert nodules is highly pulverized in the Farkas-völgy valley and at the Budapest-Farkasréti site, broken and friable at the Órdög-orom hill, and bedded at the Végvári-szikla locality and the Kavics-árok valley. At the Órdög-orom hill and Budapest-Farkasréti site, the siliceous nodules can be found heavily cemented in breccia-conglomerate.
Up to now, besides the Budapest-Farkasrét site, the occurrences in the Farkas-völgy and Irhás-árok valleys have yielded artefacts of prehistoric human activity. In most cases, the collected assemblage comprises core remnants and flakes without any ceramics (Figure 10). Furthermore, hammerstones are also abundant. According to our field prospection at these localities, the surface morphology suggests the existence of extraction features. There is a series of small, mainly shallow depressions which are common in prehistoric quarrying fields in Europe (Budziszewski et al. 2019; Sudol-Procyk et al. 2018). This requires further investigation, however, after cleaning the surface we found knapping debris inside these features (Figure 8: A).

The outcrops are located at 250 - 300 m a.s.l. In the last few years, archaeological supervision has been conducted during house constructions in the Spanyolrét, Madárhegy, Hosszúrét, Gazdagrét and Sasad quarters of Budapest, lying to the south of the foothills between 130 and 195 m a.s.l. In the eastern part of this area, D. Kraus reported nine localities where large quantities of bigger boulders (the size of a fist or child-head) and nodule
fragments have been unearthed from the clayey and loess sediments under the Holocene soil (Faragó et al. 2018) (Figure 4: a-i).

In the studied area of the Buda Hills, primary autochthonous sources were identified at the Ördög-orom hill and at the Végvári-szikla locality where chert blocks can be seen in the wall of the dolomite cliffs. However, there is no evidence of human extraction. We found features similar to the mentioned pit-like depressions in their vicinity which seem to be more plausible sources, but of the secondary autochthonous type. Interestingly, these locations fit quite well to the borders of the patches of the “cherty dolomite” formation of the geological map (Figure 4). The actual vegetation cover hinders the discovery of the locations where erosion already uncovered chert blocks. Among the nine identified occurrences, the only exception is the Budapest-Farkasrét extraction site. There is grassy vegetation probably because of the very thin soil layer.

Nevertheless, the periods of use of the Buda hornstone suggested by the archaeological evidence at our disposal (Table 2) probably have had less favourable climatic conditions for forests, thus possibly better visibility of the occurrences. The Middle Palaeolithic human occupation of Érd took place under a cold climate and in a mainly open environment with patches of coniferous forest. We only can hypothesize these circumstances without any modern sedimentological analyses and mainly based on the presence of large herbivores like woolly rhinoceros and horses and the identified charcoals from the hearths (Daschek & Mester 2020). The period from the Late Copper Age Baden Culture to the Middle Bronze Age Vatya Culture in Hungary dates approximately between 3,350 cal. BCE (Horváth & Svingor 2015: 33) and 1,600-1,500 cal. BCE (Jaeger & Kulcsár 2013: 313) which corresponds to the Subboreal climatic phase of the Holocene. In this phase, the climate became cooler resulting in the extension of beech in the woodlands, moreover, important technological and social changes also happened parallel to this climatic change (Fischl et al. 2013).

At the moment, we have evidence concerning the exploitation method only in Budapest-Farkasrét where 260 mining tools made of antler, knapping waste of chert, and hammerstones have been found in three undisturbed horizontal levels. At the bottom of the excavated area, two extraction pits were also observed (Figure 9). The radiometric dating of the mine was ambiguous (Vörös 1998-1999: 96): the date of 40,350 ± 950 uncal. BP (GrN 15567) from charcoal represents a Middle Palaeolithic age, while the date of 3,470 ± 80 uncal. BP (B 4709) from an antler corresponds to the early Middle Bronze Age. To look for extraction pits or other mining features in the Ördög-orom hill, Végvári-szikla locality, Irhás-árok, and Kavics-árok valleys, the application of geophysical methods and a thorough analysis of the surface morphology are expected in the future. The presence of hammerstones in the Farkas-völgy and Irhás-árok valleys suggest that prehistoric people collected and tested blocks of raw material easily accessible in the slope sediment. It is very important to add the possibility of access to the raw material blocks in the pediment of the foothills. There, the occurrences are located in the continuation of the Irhás-árok valley. It needs further geomorphological investigation for clarifying the origin and the transportation-accumulation process of the chert blocks in the sediment. According to the geological map, there are Pleistocene slope sediments which suggest the secondary autochthonous type of source (Faragó et al. 2018). However, if it was linked to the formation of the foothill region like in the Mátra Mountains, these occurrences should be classified as sub-allochthonous sources. It is necessary to evaluate their accessibility in the concerned period of the Holocene. However, this potential source was very close to the Bronze Age settlement of Albertfalva where the use of the Buda hornstone was present (Biró 2002a).

Archaeological studies usually highlight the low quality of the Buda hornstone (Biró 2002a; Horváth 2012; 2017), concluding that it determined the general aspect of the lithic industries: small pieces, flakes, and blade fragments as blanks, splinter technique for blank
production. In our understanding, the correlation is inverse: the knappers used the low-quality raw material because it was convenient for their purposes. Production of small arrowheads, saws, and harvesting implements (Horváth 2012) do not require bigger, well-made, or standardized blanks and producing simple flakes does not require sophisticated debitage methods. The Buda hornstone blocks splintered easily into irregular flakes during knapping because of the many cracks inside. So, this raw material property facilitated production. In contrast, the size of the side-scrapers in the Middle Palaeolithic lithic industry at Érd reach 60 - 80 mm, although the average size is 42 mm (Mester & Moncel 2006). The overwhelming majority of the toolkit was made of quartzite pebbles, and no retouched tool was produced of Buda hornstone found at the site.

5. Discussion
Both studied areas have special characteristics differing from each other. The Mátra Mountains are composed of volcanic rocks formed during the Tertiary, while the Buda Hills are built up of Mesozoic sedimentary rocks. At the same time, they have common features too. Both have a long geologic history within the eventful formation of the Carpathians and the Pannonian Basin. Both have a foothill zone formed by erosion in consequence of the uplift of the mountains and the subsidence of the neighbouring lowland. Both have their characteristic local raw material type: the limnosilicates in the Mátra Mountains as well as the Buda hornstone or chert in the Buda Hills. The use of both is documented on archaeological sites from several prehistoric periods. Both materials have many occurrences in the studied areas which could have been considered raw material sources by different prehistoric communities living there.

To assess the problem of raw material sources in the study areas, we evaluate the availability-accessibility-exploitability-appropriateness factors. For this we need to overlap geological, palaeogeographical, and archaeological data, taking into account the abovementioned complex viewpoints. The OSA model is very promising to describe and understand human-lithic resource interaction in both regions.

5.1. Human-lithic resource interaction at Mátraalja
The evaluation of the human-lithic resource interaction dynamism for the study area is difficult because our data presented in Table 2 are collected from the literature. In most of the cases, the authors mention “limnosilicite from the Mátra”. For a detailed analysis, it is essential to check the pieces for identifying variants in the future. Based on the actual dataset, we can draw only a general picture of the lithic resources of the study area as a unit.

In the late Middle Palaeolithic, limnosilicite occurrences were sources for the industries characterized by bifacial tools (Bábonyian, Micoquian). Bearers of these industries probably frequented the region during their movements between the Cserhát and Bükk mountains (confer Markó 2009). The leaf points found near Gyöngyőstarján may be the vestiges of short stops when they travelled across the region (Gutay et al. 2010). In the same period, these outcrops were occurrences for Mousterian groups who have based their raw material economy on the sources of the Bükk Mountains and its foothills (cultural choice or limited mobility?) (confer Mester 2004a).

During the Middle to Upper Palaeolithic transition, the Szeletian groups seem to have been continuing the same mobility as that of the Bábonyian and Micoquian groups. So, the resources of the Mátra remained sources for them. In the Early Upper Palaeolithic, the Aurignacian groups had either increased mobility or larger territory because they regularly used long-distance raw materials from outside the Carpathians. For them, the resources of the Mátra were sources. The only known exception is the Nagyréde site where the local
limnosilicites dominate the assemblage (Lengyel et al. 2006). It represents perhaps a periodically inhabited base camp, exploiting the local raw material sources for producing domestic tools.

During the Middle and Late Upper Palaeolithic, the limnosilicites of the Mátra were occurrences for Late Gravettian groups before the Late Glacial Maximum (LGM). Possibly they did not favour this region at all. During the LGM, Early Epigravettian groups were living in the Carpathian Basin using mainly local and regional raw materials (Lengyel 2014; 2018). The Halmajugra and Feldebrő sites correspond to this pattern (Gutay 2016; Gutay et al. 2016). After the LGM, Late Epigravettian groups used extra-Carpathian raw materials again which suggests increasing mobility (Lengyel 2014; 2018). Accordingly, the limnosilicites of the Mátra became sources again, but their limited quantity in the assemblages suggest short visits.

At the beginning of the Holocene, the limnosilicite resources became occurrences again because we do not have any settlement in this part of the Carpathian Basin. Mesolithic groups living in the floodplain of the river Zagyva started to use the limnosilicites of the Mátra from the Boreal period onward (Kertész 2002). According to their limited mobility, they based their lithic tool production essentially on these sources, exploiting perhaps the allochthonous ones.

In the Early Neolithic, the first farmers of the Körös Culture did not know the limnosilicite occurrences. Spreading across the Great Hungarian Plain along the Tisza River, they used both the former sources of the Banat flint and the newly discovered sources of the Carpathian obsidian (Mateiciucová 2007). Spreading towards the north, Neolithic people started to use regional raw materials of the North Hungarian Range, including the Mátra Mountains. The inhabitants of the Middle Neolithic settlement at Apc dominantly used local limnosilicites (Kaczanowska et al. 2016). Possibly they exploited directly the archaeological site on the Bánya-domb hill, as far as it should be concluded from the core (Figure 6) which has a structure corresponding to the debitage strategy of the LBK (confer Mester & Tixier 2013). In the Late Neolithic, the limnosilicites of the Mátra remained sources, certainly due to the network of settlements or the supply system (Faragó 2016).

5.2. Human-lithic resource interaction in the Buda Hills

Concerning the evaluation of the human-lithic resource interaction dynamism for the study area, our data presented in Table 2 are more useful than those of the Mátra limnosilicites, although they were collected from the literature as well. That is because, on the one hand, the Buda hornstone is less variable macroscopically than the limnosilicites, and on the other hand, the related studies were conducted after the discovery of the Budapest-Farkasrét extraction site (Faragó et al. 2018). These data suggest that the lithic resources in the southern part of the Buda Hills remained occurrences during the entire Palaeolithic and Mesolithic eras. The only known exception is the Middle Palaeolithic site of Érd but this raw material has hardly any importance within the industry (about 2%) (Faragó et al. 2018: tab. 1). Even though the ^{14}C date, obtained on charcoal for the Budapest-Farkasrét site, fits quite well into the radiometric age of the occupations of Érd, Middle Palaeolithic mining activity is highly uncertain in the light of actual archaeological evidence. Regarding the technical and social investment necessary to mining, the Neanderthals of Érd most probably collected the fragments of Buda hornstone at the abovementioned sources in the foothills. At present, we cannot explain the lack of evidence of use in the Upper Palaeolithic and Mesolithic. The reason might be simply an archaeological research gap, however, there are some Palaeolithic cave sites in the surrounding mountainous area. During the Late Upper Palaeolithic, a series of open-air sites existed along the Danube Bend between Esztergom and Budapest (Dobosi
2014). The southernmost site is Budapest-Corvin-tér which is located at a distance of only 5 km from the outcrops in the Farkas-völgy valley. Moreover, the Early Epigravettian industry of the site is characterized by small tools (Ringer & Lengyel 2008). Given these circumstances, it could be a cultural decision not to use the local chert.

In the Neolithic, the chert resources of the Buda Hills were occurrences for the inhabitants of the region. Although there were settlements from the Early to the Late Neolithic, actually we do not know any piece of evidence about the use of the Buda hornstone. Perhaps, the reason is the overwhelming dominance of the exploitation (including mining) of the Transdanubian radiolarite sources in the Bakony, Mecsek, and Gerecse mountains (Bácskay 1981; 1995; Biró 1995; 1998a; Mateiciucová 2007).

Significant use of the Buda hornstone firstly can be dated to the Late Copper Age Baden culture, and it became more abundant through the Early Bronze Age Bell-Beaker culture until the Middle Bronze Age tell cultures, namely the Nagyrév and Vatya horizons (Table 2). The spatial distribution of this raw material was restricted to a 50-100 km circle around the outcrops. In these cultural contexts, the communities likely extracted the raw material at the sites in the Farkas-völgy and Irhás-árok valleys. After calibration by OxCal 4.4 (IntCal20), the second date obtained on antler of the Budapest-Farkasrét extraction site corresponds to the beginning of the Middle Bronze Age (Nagyrév and Vatya) (confer Jaeger & Kulcsár 2013). The Nagyrév and Vatya cultural context characterize the Százhalombatta-Földvár site, situated 16 km to the south from the extraction site, where the Buda hornstone dominates the lithic raw materials with 90% (Faragó et al. 2018: tab. 1). Similarly, the Budapest-Albertfalva and Budapest-Hollandi-street sites of the Early Bronze Age Bell-Beaker culture, which are the richest in Buda hornstone material with >80% (Faragó et al. 2018: tab. 1), are located respectively 6 and 11 km to the south-east from the Farkas-völgy valley. It is most probable that the localities with human impact in the Farkas-völgy and Irhás-árok valleys were not only sources but archaeological sites for these Bronze Age communities.

6. Conclusion

The exploitation of available natural resources is a basic management problem for all human groups or societies. Solving it in practical terms is guided by environmental and cultural factors. The palaeoethnological approach we have chosen for studying this problem is extremely useful because of the complexity it provides to think about. Especially in the case of lithic raw material resources, this complexity is well-expressed. The methodology we apply is inspired by those established by French researchers and proved to be very useful and efficient in the study of the selected regions of Hungary.

Thanks to the complex palaeoethnological approach we applied, our research program revealed similarities and differences in prehistoric lithic raw material procurement in the two study areas. According to Turq’s categories, allochthonous type of source is not present, but primary and secondary autochthonous as well as sub-allochthonous types of sources were identified in both areas. However, the exploitation of primary autochthonous sources of limnosilicates could not be demonstrated in the Mátraalja. At the moment, the exploitation of secondary autochthonous and sub-allochthonous sources seems certain for all prehistoric periods encountered. Further field investigation is needed for archaeological evidence of exploitation (extraction pits and tools, debris) at the sources, and dating the human activities. These will allow us to complete and specify the OSA model for the description of the human-lithic resource interaction dynamics in the studied regions.

Moreover, we continue to analyze the lithic assemblages of the region to clarify the same aspect concerning past human behaviour. It needs further confirmation that the Buda hornstone was not considered as raw material by Upper Palaeolithic, Mesolithic, and...
Neolithic communities. Until that point, we can only interpret the lack of evidence as a result of research bias. Similarly, the use of the Mátra limnosilicites by the communities of the Copper and Bronze Ages poses a big question because detailed analyses of their lithic assemblages (mainly the knapped industries) are almost non-existent at the moment.

In both study areas, the petrographic characterization of the variants has to be continued together with their diversity of occurrences. The first results in this aspect are promising for the Buda hornstone, while the variability of the limnosilicites seems to be too large. Nevertheless, we hope to find well-recognizable variants, as it is the case of the limnosilicites of the Bükk and the Tokaj mountains (Hartai & Szakáll 2005; Prichystal 2013; Szekszárdi et al. 2010).

7. Acknowledgements

We are grateful to Attila Péntek, Zoltán Henrik Tóth, Ferenc Cserpák, Dávid Kraus and Mónika Gutay for informations about their field observations. The “Lithic resource management dynamics from the Middle Palaeolithic to the Middle Neolithic in Northern Hungary” project is financed by the National Research, Development and Innovation Fund (grant no. K 124334). The study of the sources and the prehistoric utilization of the Buda hornstone is a joint research program of the Institute of Archaeological Sciences of the Eötvös Loránd University, Budapest and the Budapest History Museum - Aquincum Museum. Finally, we are greatly indebted to Attila Király for improving the English text.

Data accessibility statement

The data used here are from the ownership of the authors, and the others are cited. The data presented in this study are available on request from the authors.

References

DOI: https://doi.org/10.2218/jls.4444

DOI: https://doi.org/10.1017/s0003598x00087986

Barkai, R., Gopher, A. & La Porta, P.C. 2002, Palaeolithic landscape of extraction: flint surface quarries and workshops at Mt Pua, Israel. Antiquity, 76: 672-680. DOI: https://doi.org/10.1017/s0003598x00091110

Csongrádiné Balogh, É. 2001, Adatok a rézkori, bronzkori pattintott kőeszközök tipológiájának értékeléséhez (Jász-Nagykun-Szolnok megye). *Tisicum*, 12: 91-106. (in Hungarian) (“Data for typological evaluation of knapped stone tools from Copper and Bronze Ages”)

Djindjian, F. 2012, Is the MP-EUP transition also an economic and social revolution? *Quaternary International*, 259: 72-77. DOI: https://doi.org/10.1016/j.quaint.2011.03.040

economic variations in the processes of the realization of palaeolithic stone tool-kits“)
DOI: https://doi.org/10.4000/tc.5013

Gutay, M., Kerékgyártó, Gy. & Kecskeméti, A. 2010, Bifaciális levélhegyek a Mátraaljáról. Ősrégészeti Levelek, 12: 12-17. (in Hungarian) (“Bifacial leaf points from the Mátra Mountains”)

Horváth, T. 2017, The stone implements and wrist-guards of the Bell Beaker cemetery of Budakalász (M0/12). Vjesnik Arheoloskog Muzeja u Zagrebu, 50: 71-118. URL: https://hracak.srce.hr/191998

Kadić, O. 1916, Ergebnisse der Erforschung der Szeletahöhle. Mitteilungen aus dem Jahrbuche der königlichen Ungarischen Geologischen Reichsanstalt, 23: 161-301. (in German) (“Results of the investigation of Szeleta cave”)

Lengyel, G. 2018, Lithic analysis of the Middle and Late Upper Palaeolithic in Hungary. *Folia Quaternaria*, 86: 5-157. DOI: https://doi.org/10.4467/21995923fq.18.001.9819

Mester, Zs. 2004b, La production lithique à la station d’Érd (Hongrie). In: Die aktuellen Fragen des Mittelpaläolithikums in Mitteleuropa - Topical issues of the research of Middle Palaeolithic period in Central Europe (Fülöp, É. & Cseh, J., Eds.), Tudományos Füzetek Vol. 12, Komárom-Esztergom County Museum Directorate, Tata: p. 233-250. (in French) (“The lithic production at the site of Érd (Hungary)"

URL: https://mek.oszk.hu/09800/09802/09802.pdf

Journal of Lithic Studies (2022) vol. 9, nr. 1, 44 p. DOI: https://doi.org/10.2218/jls.7475

Péntek, A. 2015, Open-air site complex with leaf-points at Szécsénke (Cserhát Mountains, Northern Hungary). Preliminary results. Litikum, 3: 46-69. DOI: https://doi.org/10.23898/litikuma0012

DOI: https://doi.org/10.2218/jls.7475

Recherches Archéologiques de Université de Liège Vol. 43, Université de Liège, Liège: p. 28-44.

Starnini, E., Voytek, B.A. & Horváth, F. 2007, Preliminary results of the multidisciplinary study of the chipped stone assemblage from the Tisza culture site of tell Gorzsa (Hungary). In: *The Lengyel, Polgár and related cultures in the Middle/Late Neolithic in Central Europe* (Kozłowski, J.K. & Raczky, P., Eds.), The Polish Academy of Arts and Sciences Kraków-Eötvös Loránd University Institute of Archaeological Sciences Budapest, Kraków: p. 269-278.

Journal of Lithic Studies (2022) vol. 9, nr. 1, 44 p. DOI: https://doi.org/10.2218/jls.7475
De la roche-mère à l’alluvium : Considérations sur l’interaction entre les humains et les sources de matière première

Zsolt Mester1,2, Norbert Faragó1

1. Institut des Sciences Archéologiques, Université Eötvös Loránd, Múzeum krt. 4/B, 1088 Budapest, Hongrie.
 Email: Z. Mester: mester.zsolt@btk.elte.hu, N. Faragó: farago.norbert@btk.elte.hu
2. UMR 7194 Histoire Naturelle de l’Homme Préhistorique, CNRS/MNHN/UPVD, Institut de Paléontologie humaine, 1 Rue René Panhard, 75013 Paris, France

Résumé:

Bien que les investigations sur les origines des matières premières lithiques en Hongrie aient commencé à la fin des années 1970, y compris les fouilles de mines préhistoriques, peu d’attention a été faite à l’aspect anthropologique : comment des hommes préhistoriques ont acquéri les matières premières pour leur production lithique. L’approche palethnologique que nous appliquons dans cette recherche vise à reconstituer la vie d’un groupe humain préhistorique, c’est-à-dire étudier leur relation au monde environnant. Autrement dit, de reconnaitre les éléments de l’environnement qui ont jouer un rôle dans leur stratégies de survie, y compris l’économie de matières premières et la production d’outils. Du point de vue anthropologique, l’acquisition et l’utilisation préhistoriques des matières premières sont influencées par une game de différents facteurs. Ces facteurs ont été mesurés par les hommes préhistoriques pour envisager la potentialité de gîtes comme sources de matière première. Le modèle Occurrence-Source-Archaeological site (OSA) que nous présentons dans cet article aide à décrire l’interaction des ressources de roches siliceuses et des humains. Tous les lieux où se trouvent des roches aptes à la taille sont considérés une Occurrence. Si la matière première lithique de cette occurrence se rencontre dans les matériels archéologiques, nous l’appelons une Source parce qu’elle a été utilisée par les humains. Tous les lieux où se trouvent des vestiges des activités humaines sont considérés un Archaeological site. Avant l’effet humain, les gîtes de roches siliceuses considérés comme sources de matière première ont eu leur propre histoire, de la roche-mère originale aux dépôts alluviaux, due aux processus géologiques-géomorphologiques de formation, de transformation et de transport. D’après Alain Turq, les sources de matière première peuvent être regroupées dans quatre catégories principales : sources autochtones primaire et secondaire, sources sub-allochtone et allochtone. Le type de la source a un effet non seulement sur la distance de transport mais également sur la qualité des blocs procurés, et il fournit de conditions différentes d’acquisition de blocs de matière première. Sur la base de ces considérations, notre recherche a deux objectifs : de localiser les ressources naturelles lithiques potentielles dont pouvaient disposer les hommes préhistoriques vécus dans la région dans une période donnée, ainsi que de comprendre le choix humain effectué entre ces ressources avec son arrière-plan comportemental. Pour le premier objectif, toutes sortes d’affleurements de roches siliceuses de la région ont été cartographiées. Pour le second objectif, une analyse techno-économique est appliquée. Nous avons étudié deux aires en Hongrie du nord : la région de piémont de Mátraalja et la partie méridionale des monts de Buda. Tous les deux aires ont une longue histoire géologique dans la formation animée des Carpates et du bassin Pannonien. Tous les deux dispose d’un type caractéristique de matière première locale : les limnosilicites dans la montagne de Mátra et la chaille de Buda dans les monts de Buda. L’utilisation de ces matières premières spécifiques est documentée aux sites archéologiques pour plusieurs périodes de la Préhistoire. Tous les deux matériaux ont plusieurs gîtes dans les aires étudiés qui pouvaient être
considérés comme sources par différents groupes humains ou communautés préhistoriques vivant là. Selon les catégories de Turq, le type allochtone de source ne s’y trouve pas, mais les types autochtones primaire et secondaire ainsi que le type sub-allochtone ont été identifiés dans tous les deux aires. Cependant, l’exploitation des sources autochtones primaires de limnosilicite ne peut pas être prouvée dans la région de Mátraalja. Pour le moment, l’exploitation des sources autochtones secondaires et celle des sources sub-allochtones semblent les plus vraisemblables pour toutes les périodes concernées.

Mots-clés: gîtes des roches siliceuses: sources de matière première; modèle OSA de l’interaction, Paléolithique, Néolithique, Hongrie du nord