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Abstract: 

Automated surface area measurements have been of interest to archaeologists since digital imagery 

began allowing researchers to remotely collect artefact metrics. We present a method of automatically 

measuring 2D surface area from artefact planform images employing computer vision in Python. The 

Python script, provided as a .py file in supplementary data, creates boundaries around regions of 

relatively homogeneous pixels (artefacts) in the image. These bounded regions are called contours. A 

count of the number of pixels within each contour provides a surface area in pixels. A circular reference 

object provides a conversion factor for the contours, as well as a point of reference for geometric 

accuracy of outputs. 

 Measurements of 2D artefact surface area can be used in combination with measurements of 

length, width, thickness, and mass, or in some cases, replace such measurements. As presented, this 

technique provides utility to archaeology with applications to new documentation of artefacts, archived 

artefact images containing a scale, as well as landscape geoarchaeology and sedimentary contexts. 

Limitations of this type of surface area measurement include the requirement of the image background 

being of a solid colour heavily contrasting the artefacts being measured. Effectively, the background 

requirement limits deployment supporting collection of rapid field measurements from in-situ surface 

scatters without modification to the script or manipulation of the artefacts. Analytical applications 

utilizing this technique include studies of relative artefact abundance, shape and size class 

characterizations in artefact scatters, and redistribution of artefacts by geomorphological processes. 
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1. Introduction and background 

Automatic extraction of measurements and shape data from artefacts is not a new trend in 

archaeology. In the early 1990s, the Graphically Oriented Archaeological Database Project 

produced an environment allowing archaeologists to automatically extract and compare shape 

information from line drawings of artefacts, primarily pottery vessels (Lewis & Goodson 1991). 

Within a decade, this approach was employed by archaeologists studying lithic artefacts 

justifying the process as a means to extract information and metrics that may be hard to extract 

using a calliper and other traditional methods (McPherron & Dibble 1999). 
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Over two decades later, the pace of technological advancement has continued to increase, 

and digital cameras, laptops, tablets, and mobile phones are now commonplace in 

archaeological fieldwork. While adoption of digital technologies is widespread in archaeology, 

digital data collection methodologies have not enjoyed the same appreciation. Byrd & Owens 

(1997: 316) identify one factor impeding the adoption of new methods measuring surface area 

of artefacts stating that measuring “surface area … will not likely be adopted by archaeologists 

unless a relatively simple technique is developed for obtaining such data”. 

Here we present a step toward the technique forecasted by Byrd & Owens (1997) by 

automating the extraction of 2D surface area using computer vision from the OpenCV package 

in Python 3 (Bradski 2000; Van Rossum & Drake 2009). The method allows archaeologists to 

extract surface area measurements from an assemblage, collection, or sample of lithic flakes, 

or other relatively flat artefacts, using images. Images can contain many artefacts, and 

measurements are automatically output to a CSV file. 

 

2. Methods 

The script used to derive artefact surface area was modified from a post originally on 

PyImageSearch using computer vision to measure objects in images (Rosebrock 2016). The 

resulting method employs computer vision to automatically quantify the 2D surface area of 

experimentally produced lithic flakes in a planform image. User inputs for the script are the 

path to the input image and diameter of the circular reference object entered during command 

line execution of the script. Required materials (Table 1) include a circular reference object, 

camera, background of contrasting colour, artefacts, and a Python 3 installation including the 

packages. 

A crucial requirement was the placement of a circular reference object with a known 

diameter at the left of the image (Figure 1). Initial measurements were converted from a count 

of pixels to user input units from the diameter of the reference object allowing subsequent 

measurements to use the same units. Our reference object is a Canadian Quarter with a reported 

diameter of 2.388 cm from Royal Canadian Mint technical specifications (25 Cents, 

Government of Canada, n.d.). 

A selection of differentially shaped, experimental flakes was used to demonstrate the 

process of extracting surface area measurements using Python. The flakes consist of a light grey 

Georgetown flint with a white cortex. To contrast the flake material, a matte black background 

was selected. Flakes were placed to the right of the reference object in the image frame. 
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Figure 1: Input image of experimental flakes with circular reference at left. 

 

2.1. Script 

Python 3 code is located below, highlighting how the technique works. For a more detailed 

explanation on this technique, please visit the tutorials on DigitalArchNS (Weatherbee 2020) 

or PyImageSearch (Rosebrock 2016). 

To employ the script, install the required packages (Table 1), navigate to the directory 

holding the python script within a command prompt window. Ensure the subdirectories 

“images” and “csv” exist, the “images” subdirectory contains the image to be measured, and 

that the diameter measurement of the circular reference object is known. To start measuring 

enter the following, modifying red text to reference user input: 

python artifact-area.py --image [path to image] --width [diameter] 

Where [path to image] is the path of the image files relative to the directory of the python 

script, and [diameter] is the diameter of the reference object in the desired unit of measurement. 

Note that a hardcoded threshold of 10000 pixels is set as a minimum size of objects measured 

by the script. This value can be modified to include smaller objects or exclude background noise 

from measurements. After entering this information, press the Enter key to begin measuring. 

First, the input image is converted to a single channel composite greyscale image. Gaussian 

blur is executed twice prior to edge detection using an initial kernel of 9x9 followed by a 5x5 

kernel iteration promoting smoothed edges while minimizing overall image blur. Edge 

detection is then applied to the composite greyscale image using the auto_canny method defined 

at the top of the script (Canny 1986; Rosebrock 2015b). Erode and dilate functions then 

decrease and increase the thickness of the contour in pixels, respectively. These functions help 

derive the contours from the input image, therefore providing information fundamental to the 

process of extracting surface area. Three iterations of the dilate function are followed by two 

iterations of erode to promote contour connectivity along artefact perimeters in the edge map. 

Contours are sorted from left to right, then enter a for loop measuring X, Y, and surface area. 

For each contour the user is required to press any key to cycle through an image displayed for 
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each contour. Once all contours are visualized, the script will append measurements to a CSV 

available in the ‘csv’ folder. 

 
Table 1: Summary table of Python packages used in the script. 

Packages 
Name Summary Reference Installation Alias 

OpenCV Open-source computer vision and 
machine learning library built to simplify 
and streamline adoption of machine 
learning and computer vision.  
Version 4.1.2.30 

(Bradski 
2000) 

pip install 
opencv-
python==4.5.5.
62 
 

cv2 

SciPy Open-source mathematical algorithm and 
convenience function library built on-top 
of NumPy. 
Version 1.3.3 

(Virtanen 
et al. 
2020) 

pip install 
scipy==1.3.3 

distance 

imutils Open-source convenience function and 
visualization library built on OpenCV, 
matplotlib, and NumPy. 
Version 0.5.3 

(Rosebroc
k 2015a) 

pip install 
imutils==0.5.3 

perspectiv
e; 
contours 

NumPy Open-source scientific computing library 
fundamental to many Python workflows.  
Version 1.17.4 

(Harris et 
al. 2020) 

pip install 
numpy==1.17.4 

np 

ArgParse Native Python library simplifying user 
input to scripts through CMD. 
Python 3 Version 3.7.5 

(Van 
Rossum 
2021) 

n/a argparse 

CSV Native Python library simplifying read and 
write of CSV files from multiple sources. 
Python 3 Version 3.7.5 

csv 

matplotli
b 

Open-source 2D graphics library for 
visualization and app development. 
Version 3.1.2 

(Hunter 
2007) 

pip install 
matplotlib==3.1
.2 

n/a 

pandas Open-source data structure and statistical 
tools library designed to make scientific 
Python a more attractive and practical 
statistical computing environment for 
academic and industry practitioners alike 
(McKinney 2010, 56).  
Version 0.25.3 

(McKinne
y 2010) 

pip install 
pandas==0.25.3 

pd 

 

""" 

 Title: Automated Rapid Artifact Surface Area Measurement from Imagery using 

Computer Vision 

 Author: Wesley Weatherbee 

 Date: February 2020 

 Description: This script is intended to rapidly collect measurements  

              from multiple artifacts in a single image using computer  

              vision. 

  

 Modified from: https://www.pyimagesearch.com/2016/03/28/measuring-size-of-objects-

in-an-image-with-opencv/ 

 Original Author: Adrian Rosebrock 
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 Date: March 28, 2016  

""" 

 

# USAGE 

# open command-line (cmd.exe) and change the path to refer to the  

# path where the file is loaded using: cd [path to directory here] 

# after changing the directory, enter the following code in command-line: 

# python artifact-area.py --image images/test_01.jpg --width 2.381 

 

# import the necessary packages 

from scipy.spatial import distance as dist 

from imutils import perspective 

from imutils import contours 

import numpy as np 

import argparse 

import imutils 

import cv2 

import csv 

import pandas as pd 

 

# define the automatic canny edge detection method 

def auto_canny(image, sigma=0.33): 

    # compute the median of the single channel pixel intensities 

    v = np.median(image) 

 

    # apply automatic Canny edge detection using the computed median 

    lower = int(max(0, (1.0 - sigma) * v)) 

    upper = int(min(255, (1.0 + sigma) * v)) 

    edged = cv2.Canny(image, lower, upper) 

 

    # return the edged image 

    return edged 

 

# define midpoint method 

def midpoint(ptA, ptB): 

    return ((ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5) 

 

# construct the argument parser and parse the arguments 

ap = argparse.ArgumentParser() 

ap.add_argument("-i", "--image", required=True, 

    help="path to the input image") 

ap.add_argument("-w", "--width", type=float, required=True, 

    help="width of the left-most object in the image (user defined measurement system)") 

args = vars(ap.parse_args()) 

 

# load the image, convert it to grayscale, and blur it slightly, twice 

image = cv2.imread(args["image"]) 

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 

gray = cv2.GaussianBlur(gray, (9, 9), 0) 

gray = cv2.GaussianBlur(gray, (5, 5), 0) 
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# perform edge detection, then perform a dilation + erosion to 

# close gaps in between object edges 

edged = auto_canny(gray) 

edged = cv2.dilate(edged, None, iterations=3) 

edged = cv2.erode(edged, None, iterations=2) 

 

# find contours in the edge map 

cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, 

    cv2.CHAIN_APPROX_SIMPLE) 

cnts = imutils.grab_contours(cnts) 

 

# sort the contours from left-to-right and initialize the 

# 'pixels per metric' calibration variable 

(cnts, _) = contours.sort_contours(cnts) 

pixelsPerMetric = None 

 

# create list object 

measure = [] 

 

# loop over the contours individually 

for c in cnts: 

    # if the contour is not sufficiently large, ignore it 

    if cv2.contourArea(c) < 10000: 

        continue 

 

    # compute the rotated bounding box of the contour 

    orig = image.copy() 

    box = cv2.minAreaRect(c) 

    box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box) 

    box = np.array(box, dtype="int") 

 

    # order the points in the contour such that they appear 

    # in top-left, top-right, bottom-right, and bottom-left 

    # order. 

    box = perspective.order_points(box) 

 

    # unpack the ordered bounding box, then compute the midpoint 

    # between the top-left and top-right coordinates, followed by 

    # the midpoint between bottom-left and bottom-right coordinates 

    (tl, tr, br, bl) = box 

    (tltrX, tltrY) = midpoint(tl, tr) 

    (blbrX, blbrY) = midpoint(bl, br) 

 

    # compute the midpoint between the top-left and top-right points, 

    # followed by the midpoint between the top-right and bottom-right 

    (tlblX, tlblY) = midpoint(tl, bl) 

    (trbrX, trbrY) = midpoint(tr, br) 

 

    # compute the Euclidean distance between the midpoints 
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    dA = dist.euclidean((tltrX, tltrY), (blbrX, blbrY)) 

    dB = dist.euclidean((tlblX, tlblY), (trbrX, trbrY)) 

 

    # if the pixels per metric has not been initialized, then 

    # compute it as the ratio of pixels to supplied metric 

    # (in this case, inches) 

    if pixelsPerMetric is None: 

        pixelsPerMetric = dB / args["width"] 

 

    # computer centre of the contour 

    M = cv2.moments(c) 

    cX = int(M["m10"] / M["m00"]) 

    cY = int(M["m01"] / M["m00"]) 

 

    # compute the size and surface area of the object 

    dimA = (dA / pixelsPerMetric) 

    dimB = (dB / pixelsPerMetric) 

    SA = ((cv2.contourArea(c) / pixelsPerMetric) / pixelsPerMetric) 

 

    # add measurements to list 

    measure.append((dimA, dimB, SA)) 

 

    # draw contours in red 

    cv2.drawContours(orig, [c.astype("int")], -1, (0, 0, 255), 2) 

 

    # draw the object area on the image 

    cv2.putText(orig, "{:.2f}sqcm".format(SA), 

        (int (cX), int (cY)), cv2.FONT_HERSHEY_SIMPLEX, 

            0.65, (0, 0, 0), 3) 

    cv2.putText(orig, "{:.2f}sqcm".format(SA), 

        (int (cX), int (cY)), cv2.FONT_HERSHEY_SIMPLEX, 

            0.65, (255, 255, 255), 2) 

 

    # show the output image 

    origS = cv2.resize(orig, (1536, 1024)) 

    cv2.imshow("Image", origS) 

    cv2.waitKey(0) 

     

# take X, Y, and surface area measurements and append them to a CSV 

col_titles = ('X', 'Y', 'SA') 

data = pd.np.array(measure).reshape((len(measure) // 1, 3)) 

pd.DataFrame(data, columns=col_titles).to_csv("csv/Measurements.csv", index=False) 

 

3. Results 

Running the script results in contours being created around each artefact in the image, from 

which surface area measurements are extracted. Our experimental results indicate an error of 

2.23% in the geometric measurements of surface area using the equation for percent error 

(PercentError = ((Experimental - Expected) x 100) / Expected). This calculation was based on 

an expected surface area of our circular reference scale (Canadian quarter) being 4.48 cm2 
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compared to the experimental surface area of 4.58 cm2 obtained by our method. The expected 

value for surface area of a quarter is calculated with the diameter measurement provided by the 

Royal Canadian Mint (“25 Cents Coins,” The Royal Canadian Mint, n.d.). The experimental 

value for surface area is provided by the contours in the script. This percent error can be 

attributed to camera angle misalignment or lens distortion and is used to calculate the 

uncertainty of surface area values in Table 2. 

The pixelsPerMetric value is a count of pixels corresponding to the user input diameter of 

the circular reference object. Our experimental results report 71.19pixels per 2.388 cm, a value 

that will change depending on resolution of the image and distance to the objects being 

measured. This is equal to a pixel dimension of 0.034cm along each side meaning each pixel 

reflects a real-world area of 1.13 × 10−3 cm2. 

The output CSV file holds measurements of surface area, and X and Y dimensions of each 

object (Table 2). The X and Y values are measured in centimetres, but do not equate to length 

and width values measured using a calliper (Andrefsky 2005: 99-101). Rather, these values 

represent the minimum and maximum length and width of the bounding box of minimum 

dimensions fitting the contour. Similar measurements have been considered to represent the 

intermediate axis of flakes, in prior lithic research (Brown 2001; Cadieux 2013). In some cases, 

these values are similar, but should not be used interchangeably. 

 
Table 2: Output tabular results from experimental data. User entered diameter bolded. SA = surface area. 

X (cm) Y (cm) SA (cm2) 

2.430 2.388 4.58 ±0.10 
2.345 5.644 10.29 ±0.23 
2.717 1.841 3.69 ±0.08 
1.633 4.721 5.71 ±0.13 
1.299 2.172 2.15 ±0.05 
2.660 1.642 3.56 ±0.08 
2.306 2.497 3.80 ±0.08 
2.644 2.079 3.72 ±0.08 
1.308 1.968 2.10 ±0.05 
4.244 3.077 10.33 ±0.23 
3.947 2.306 6.89 ±0.15 
1.637 2.299 2.80 ±0.06 
3.891 2.338 6.51 ±0.15 
4.127 4.705 13.95 ±0.31 
2.559 3.085 5.77 ±0.13 
4.325 3.421 10.27 ±0.23 
2.917 4.763 8.96 ±0.20 
1.691 1.949 2.37 ±0.05 
1.140 3.286 2.63 ±0.06 
4.544 2.476 7.71 ±0.17 
1.898 4.649 6.06 ±0.14 
1.942 1.951 2.66 ±0.06 
2.094 5.013 7.47 ±0.17 
3.655 1.891 4.45 ±0.10 
4.160 2.340 6.56 ±0.15 
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4. Applications & Limitations 

We have presented an automated, rapid technique for extracting surface area 

measurements from artefacts. This technique is lightweight, running on a Python script that can 

be executed in a command prompt using in-line arguments. The script instructs the computer 

to translate the image to greyscale, blur the image, perform Canny edge detection using 

thresholds defined by the range of values within the image, place contours around relatively 

homogeneous groupings of pixels fitting a size criterion, and output the measurements (Figure 

2) to a CSV file. 

Our method is powerful, yet simple, and with careful consideration, has a variety of 

archaeological applications, including extracting information from scans of artefact images in 

published literature. Integration of this technique within larger, more advanced morphometric 

workflows in archaeological research (e.g., Barceló 2010), and the addition of camera 

calibration (see: Sadekar & Mallick 2020) are practical next steps for this technique. The 

applications of the method presented not only apply to archaeology and artefact analysis, but 

can percolate through the disciplines of geography and geology ─ from where Byrd & Owens 

(1997) drew their inspiration. 

 

 
Figure 2: Process of surface area extraction from an image. Top Left - blurred composite greyscale image. Top 

Right – edge detection after dilation and erosion. Bottom Left – contours identified in the image using computer 

vision. Bottom Right & Inset – calculated surface area measurement of an artifact from the contour. 

 

Automated, rapid measurement of surface area also identifies a point of intersection for 

geologic, geographic, and archaeological research along past and present coastline contexts by 

considering how object shape influences its relocation by geomorphic processes. The 

intersection is expressed in emerging relational studies of geomorphology and archaeology 

known as landscape geoarchaeology (Contreras 2010; Contreras 2017; Holliday 2009; Holliday 

et al. 2019;). Flake shape often resembles that of beach shingles found within the swash-zone 

of coastal systems having a relatively small mass compared to 2D surface area. By creating a 

https://doi.org/10.2218/jls.5623


10 W.J. Weatherbee et al. 

 

Journal of Lithic Studies (2023) vol. 10, nr. 1, 14 p. DOI: https://doi.org/10.2218/jls.5623 

way of readily quantifying the geometry of swash-zone gravel shingles, geographers will be 

able to create more thorough conceptual and numerical models of how materials such as beach 

shingles and flakes are transported in coastal areas. Research in such areas will certainly provide 

insights into geoarchaeological problems of taphonomy, site-formation processes, and post-

depositional movements of artefacts within coastal environments. 

Deploying this tool on larger assemblages with well-defined spatial provenience can give 

insights into the relationships that surface area holds in relation to well-defined expected 

distributions of debitage in flintknapping areas (Kvamme 1988; 1997; 1998). Surface area can 

be used in combination with object mass, and material mass density to estimate the thickness 

and volume of materials (Cadieux 2013). Both applications present novel ways to observe 

patterns in spatial and non-spatial assemblages through attributes too complex to compute from 

traditional measurement techniques. 

This technique does not come without some limitations. The ability of this method to 

measure objects comes from an apparent contrast between object and background. This means 

that employing this method on images with varying material types may provide inaccurate 

measurements between objects. One approach to solve this problem is to separate each 

assemblage based on material type. This way, consistent measurements and associated errors 

can be obtained for each material class. 

Understanding what the measurements represent clarifies this method’s limitations and 

applicability to other problems. The distinction between 2D and 3D surface area is key. A 2D 

surface area is measured only using the horizontal axis, while a 3D surface area uses the vertical 

(depth) axis in addition to horizontal. This effectively means a 2D surface area represents a 

footprint of an artefact viewed in planform. The relevance of this distinction is that our 2D 

surface area measurement is in fact a generalized potential area for lift or drag forces to be 

applied to the object in conceptualizing artefact transportation whether it be due to waves on a 

beach, currents in a river, or striking flakes from a core. 

 

5. Conclusions 

The opportunities for research provided by this technique are vast. The convenience 

offered by our automated, rapid artefact surface area measurement technique is instrumental in 

its service of accelerating data collection and analysis. Techniques such as this bridge digital 

analysis skills and computer literacy with the material culture remains of the past. By providing 

links to blog posts inspiring this publication, we are presenting sources of information that can 

be used to develop computer literacy in relation to programming and analysis. 

Though still quite rudimentary, this technique could be applied as one step in a much larger 

research workflow. Automated metric extraction from unpublished images, and archival scans 

of artefacts offers an avenue for archival projects to benefit from this technique as well. The 

extracted contours could perceivably be one input layer into an algorithm extracting points 

along the contour for typological or morphometric analysis from an image. Alternatively, 

surface area used as a proxy for lift and drag forces may be able to help identify a feeder source 

for artefacts redistributed within coastal areas by longshore drift. Countless present and future 

applications are presented by this technique, and the authors encourage input into future 

developments by interested parties in any discipline. 
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Abstract: 

Les mesures automatisées de surface intéressent les archéologues depuis que l'imagerie numérique 

a commencé à permettre aux chercheurs de collecter à distance des données sur les artefacts. Nous 

présentons une méthode de mesure automatique de la surface 2D à partir d'images de formes d'artefacts 

en utilisant un déploiement Python 3 de vision par ordinateur. Le script Python, disponible sous la forme 

d'un fichier .py dans les données supplémentaires, crée des limites autour des régions de pixels 

relativement homogènes (artefacts) dans l'image. Ces limites de régions sont appelées contours. Un 

décompte du nombre de pixels à l'intérieur de chaque contour fournit une superficie en pixels. Un objet 

de référence circulaire fournit un facteur de conversion pour les contours, ainsi qu'un point de référence 

pour la précision géométrique des résultats.  

Les mesures de la surface des artefacts en 2D peuvent être utilisées en combinaison avec les 

mesures de la longueur, de la largeur, de l'épaisseur et de la masse ou, dans certains cas, remplacer ces 

mesures. Telle qu'elle est présentée, cette technique est utile à l'archéologie en s’appliquant à la nouvelle 

documentation des artefacts, aux images d'artefacts archivées contenant une échelle, ainsi qu'à la 

géoarchéologie du paysage et aux contextes sédimentaires. Les limites de ce type de mesure de surface 

exigent l’utilisation d'un fond d'image de couleur unie contrastant fortement avec les artefacts mesurés. 

En effet, l'exigence d'un arrière-plan limite le déploiement de la collecte de mesures rapides sur le terrain 

à partir de dispersions de surface in situ sans modification du script ou manipulation des artefacts. Les 

applications analytiques utilisant cette technique comprennent des études sur l'abondance relative des 

artefacts, la caractérisation des classes de forme et de taille dans les dispersions d'artefacts et la 

redistribution des artefacts par les processus géomorphologiques. 
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