Nicotinic acetylcholine receptors (nACh) in GtoPdb v.2023.3

Cecilia Gotti¹, Michael. J. Marks², Neil S. Millar³ and Susan Wonnacott⁴

1. University of Milan, Italy
2. University of Colorado, USA
3. University College London, UK
4. University of Bath, UK

Abstract

Nicotinic acetylcholine (ACh) receptors are members of the Cys-loop family of transmitter-gated ion channels that includes the GABAₐ, strychnine-sensitive glycine and 5-HT₃ receptors [215, 3, 159, 225, 259]. All nicotinic receptors are pentamers in which each of the five subunits contains 4 TM domains. Genes encoding a total of 17 subunits (α1-10, β1-4, γ, δ and ε) have been identified [120]. All subunits with the exception of α8 (present in avian species) have been identified in mammals. All α subunits possess two tandem cysteine residues near to the site involved in acetylcholine binding, and subunits not named α lack these residues [159]. The orthosteric ligand binding site is formed by residues within at least three peptide domains on the α subunit (principal component), and three on the adjacent subunit (complementary component). Nicotinic ACh receptors contain several allosteric modulatory sites. One such site, for positive allosteric modulators (PAMs) and allosteric agonists, has been proposed to reside within an intrasubunit cavity between the 4 TM domains [264, 87]; see also [106]). The high resolution crystal structure of the molluscan ACh binding protein, a structural homologue of the extracellular binding domain of a nicotinic receptor pentamer, in complex with several nicotinic receptor ligands (e.g.[35]) and the crystal structure of the extracellular domain of the α1 subunit bound to α-bungarotoxin at 1.94Å resolution [55], has revealed the orthosteric binding site in detail (reviewed in [215, 120, 39, 198]). Nicotinic receptors at the somatic neuromuscular junction of adult animals have the stoichiometry (α1)₂β1δε, whereas an extrajunctional (α1)₂β1y6 receptor predominates in embryonic and denervated skeletal muscle and other pathological states. Other nicotinic receptors are assembled as combinations of α(2-6) and β(2-4) subunits. For α2, α3, α4 and β2 and β4 subunits, pairwise combinations of α and β (e.g. a3β4 and α4β2) are sufficient to form a functional receptor in vitro, but far more complex isoforms may exist in vivo (reviewed in [96, 93, 159]). There is strong evidence that the pairwise assembly of some α and β subunits can occur with variable stoichiometry (e.g. (α4)₂β2)₂ or (α4)₃β₂ which influences the biophysical and pharmacological properties of the receptor [159]. α5 and β3 subunits lack function when expressed alone, or pairwise, but participate in the formation of functional hetero-oligomorphic receptors when expressed as a third subunit with another α and β pair (e.g. α4α5β2, α4αβ2β3, α5αβ2, see [159] for further examples). The α6 subunit can form a functional receptor when co-expressed with β4 in vitro, but more efficient expression ensues from incorporation of a third partner, such as β3 [263]. The α7, α8, and α9 subunits form functional homo-oligomers, but can also combine with a second subunit to constitute a hetero-oligomorphic assembly (e.g. α7β2 and α9α10). For functional expression of the α10 subunit, co-assembly with α9 is necessary. The latter, along with the α10 subunit, appears to be largely confined to cochlear and vestibular hair cells. Comprehensive listings of nicotinic receptor subunit combinations identified from recombinant expression systems, or in vivo, are given in [159]. In addition, numerous proteins interact with nicotinic ACh receptors modifying their assembly, trafficking to and from the cell surface, and activation by ACh (reviewed by [158, 9, 118]).

The nicotinic receptor Subcommittee of NC-IUPHAR has recommended a nomenclature and classification scheme for nicotinic acetylcholine (nACh) receptors based on the subunit composition of known, naturally- and/or heterologously-expressed nACh receptor subtypes [143]. Headings for this table reflect abbreviations designating nACh receptor subtypes based on the predominant α subunit contained in that receptor subtype. An asterisk following the indicated α subunit denotes that other subunits are known to, or may, assemble with the indicated α subunit to form the designated nACh receptor subtype(s). Where subunit stoichiometries within a specific nACh receptor subtype are known, numbers of a particular subunit larger than 1 are indicated by a subscript following the subunit (enclosed in parentheses- see also [46]).
Contents

This is a citation summary for Nicotinic acetylcholine receptors (nACh) in the Guide to Pharmacology database (GtoPdb). It exists purely as an adjunct to the database to facilitate the recognition of citations to and from the database by citation analyzers. Readers will almost certainly want to visit the relevant sections of the database which are given here under database links.

GtoPdb is an expert-driven guide to pharmacological targets and the substances that act on them. GtoPdb is a reference work which is most usefully represented as an on-line database. As in any publication this work should be appropriately cited, and the papers it cites should also be recognized. This document provides a citation for the relevant parts of the database, and also provides a reference list for the research cited by those parts. For further details see [32].

Please note that the database version for the citations given in GtoPdb are to the most recent preceding version in which the family or its subfamilies and targets were substantially changed. The links below are to the current version. If you need to consult the cited version, rather than the most recent version, please contact the GtoPdb curators.

Database links

Nicotinic acetylcholine receptors (nACh)
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=76
Introduction to Nicotinic acetylcholine receptors (nACh)
https://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=76

Channels and Subunits
- nicotinic acetylcholine receptor α1 subunit
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=462
- nicotinic acetylcholine receptor α2 subunit
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=463
- nicotinic acetylcholine receptor α3 subunit
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=464
- nicotinic acetylcholine receptor α4 subunit
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=465
- nicotinic acetylcholine receptor α5 subunit
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=466
- nicotinic acetylcholine receptor α6 subunit
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=467
- nicotinic acetylcholine receptor α7 subunit
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=468
- nicotinic acetylcholine receptor α8 subunit (avian)
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=752
- nicotinic acetylcholine receptor α9 subunit
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=469
- nicotinic acetylcholine receptor α10 subunit
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=470
- nicotinic acetylcholine receptor β1 subunit
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=471
- nicotinic acetylcholine receptor β2 subunit
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=472
- nicotinic acetylcholine receptor β3 subunit
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=473
- nicotinic acetylcholine receptor β4 subunit
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=474
- nicotinic acetylcholine receptor γ subunit
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=475
- nicotinic acetylcholine receptor δ subunit
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=476
- nicotinic acetylcholine receptor ε subunit
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=477

References

Drescher MJ and Barretto RL. (1995) Analysis of nicotinic acetylcholine receptor subunits in the [PMID:18940593]

84. Fowler CD, Lu Q, Johnson PM, Marks MJ and Kenny PJ. (2011) Habenular alpha5 nicotinic receptor

binding proteins (AChBPs): application to the design of related α7 selective ligands. Biochim Biophys Acta 1858: 1-13

111. Hurth K and et al. MEDI 222: Identification of AQW051, an alpha7 nicotinic acetylcholine receptor partial agonist for the treatment of cognitive impairment associated with schizophrenia. Neuropharmacology 58: 146-57

116. Kedmi M, Beaudet AL and Orr-Utregre A. (2004) Mice lacking neuronal nicotinic acetylcholine receptor beta4-subunit and mice lacking both alpha5- and beta4-subunits are highly resistant to nicotine-induced seizures. Physiol Genomics 17: 221-9 [PMID:14996991]

118. Kombo DC, Mazurov A, Tallapragada K, Hammond PS, Chewing J, Hauser TA, Vasquez-Valdivieso M, Yohannes D, Talley TT and Taylor P et al. (2011) Docking studies of benzylidene anabaseine interactions with α7 nicotinic acetylcholine receptor (nAChR) and acetylcholine binding proteins (AChBPs): application to the design of related α7 selective ligands. Eur J Med Neurosci.

