IUPHAR/BPS Guide to Pharmacology CITE
https://doi.org/10.2218/gtopdb/F799/2023.1

Hydrolases in GtoPdb v.2023.1



Stephen P.H. Alexander1, Patrick Doherty2, David Fairlie3, Christopher J. Fowler4, Christopher M. Overall5, Neil Rawlings6, Christopher Southan7 and Anthony J. Turner8
  1. University of Nottingham, UK
  2. King's College London, UK
  3. University of Queensland, Australia
  4. University Hospital of Umeå, Sweden
  5. University of British Columbia, Canada
  6. Wellcome Trust Sanger Institute, UK
  7. University of Edinburgh, Sweden
  8. University of Leeds, UK


Abstract

Listed in this section are hydrolases not accumulated in other parts of the Concise Guide, such as monoacylglycerol lipase and acetylcholinesterase. Pancreatic lipase is the predominant mechanism of fat digestion in the alimentary system; its inhibition is associated with decreased fat absorption. CES1 is present at lower levels in the gut than CES2 (P23141), but predominates in the liver, where it is responsible for the hydrolysis of many aliphatic, aromatic and steroid esters. Hormone-sensitive lipase is also a relatively non-selective esterase associated with steroid ester hydrolysis and triglyceride metabolism, particularly in adipose tissue. Endothelial lipase is secreted from endothelial cells and regulates circulating cholesterol in high density lipoproteins.

Contents

This is a citation summary for Hydrolases in the Guide to Pharmacology database (GtoPdb). It exists purely as an adjunct to the database to facilitate the recognition of citations to and from the database by citation analyzers. Readers will almost certainly want to visit the relevant sections of the database which are given here under database links.

GtoPdb is an expert-driven guide to pharmacological targets and the substances that act on them. GtoPdb is a reference work which is most usefully represented as an on-line database. As in any publication this work should be appropriately cited, and the papers it cites should also be recognized. This document provides a citation for the relevant parts of the database, and also provides a reference list for the research cited by those parts. For further details see [23].

Please note that the database version for the citations given in GtoPdb are to the most recent preceding version in which the family or its subfamilies and targets were substantially changed. The links below are to the current version. If you need to consult the cited version, rather than the most recent version, please contact the GtoPdb curators.

Database links

Hydrolases
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=799
    Enzymes
            AChE(acetylcholinesterase (Cartwright blood group))
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2465
            BChE(butyrylcholinesterase)
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2471
            DAGLα(Diacylglycerol lipase α)
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1396
            DAGLβ(Diacylglycerol lipase β)
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1397
            CES1(carboxylesterase 1)
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2592
            NTPDase-1(ectonucleoside triphosphate diphosphohydrolase 1)
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2888
            NTPDase-2(ectonucleoside triphosphate diphosphohydrolase 2)
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2889
            epoxide hydrolase 2
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2970
            FAAH(Fatty acid amide hydrolase)
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1400
            Leukotriene A4 hydrolase
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1395
            LIPE(lipase E, hormone sensitive type)
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2593
            LIPG(lipase G, endothelial type)
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2591
            MAGL(Monoacylglycerol lipase)
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1399
            nudix hydrolase 7
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3085
            neuraminidase 1
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3214
            O-GlcNAcase
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3101
            PNLIP(pancreatic lipase)
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2590
            PLA2-G7
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1432
            sPLA2-2A
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1417
            PLD2
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1434
            vanin 1
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3063

References

  1. Aaltonen N, Savinainen JR, Ribas CR, Rönkkö J, Kuusisto A, Korhonen J, Navia-Paldanius D, Häyrinen J, Takabe P and Käsnänen H et al.. (2013) Piperazine and piperidine triazole ureas as ultrapotent and highly selective inhibitors of monoacylglycerol lipase. Chem Biol 20: 379-90 [PMID:23521796]
  2. Ahn K, Johnson DS, Fitzgerald LR, Liimatta M, Arendse A, Stevenson T, Lund ET, Nugent RA, Nomanbhoy TK and Alexander JP et al.. (2007) Novel mechanistic class of fatty acid amide hydrolase inhibitors with remarkable selectivity. Biochemistry 46: 13019-30 [PMID:17949010]
  3. Ahn K, Johnson DS, Mileni M, Beidler D, Long JZ, McKinney MK, Weerapana E, Sadagopan N, Liimatta M and Smith SE et al.. (2009) Discovery and characterization of a highly selective FAAH inhibitor that reduces inflammatory pain. Chem Biol 16: 411-20 [PMID:19389627]
  4. Antonioli L, Pacher P, Vizi ES and Haskó G. (2013) CD39 and CD73 in immunity and inflammation. Trends Mol Med 19: 355-67 [PMID:23601906]
  5. Aurrand-Lions M, Galland F, Bazin H, Zakharyev VM, Imhof BA and Naquet P. (1996) Vanin-1, a novel GPI-linked perivascular molecule involved in thymus homing. Immunity 5: 391-405 [PMID:8934567]
  6. Baggelaar MP, Chameau PJ, Kantae V, Hummel J, Hsu KL, Janssen F, van der Wel T, Soethoudt M, Deng H and den Dulk H et al.. (2015) Highly Selective, Reversible Inhibitor Identified by Comparative Chemoproteomics Modulates Diacylglycerol Lipase Activity in Neurons. J Am Chem Soc 137: 8851-7 [PMID:26083464]
  7. Baqi Y, Lee SY, Iqbal J, Ripphausen P, Lehr A, Scheiff AB, Zimmermann H, Bajorath J and Müller CE. (2010) Development of potent and selective inhibitors of ecto-5'-nucleotidase based on an anthraquinone scaffold. J Med Chem 53: 2076-86 [PMID:20146483]
  8. Bastid J, Cottalorda-Regairaz A, Alberici G, Bonnefoy N, Eliaou JF and Bensussan A. (2013) ENTPD1/CD39 is a promising therapeutic target in oncology. Oncogene 32: 1743-51 [PMID:22751118]
  9. Bellien J and Djerada Z. (2022) Use of inhibitors of phosphatase activity of soluble epoxide for the treatment of cardiometabolic diseases Patent number: US20220023265A1. Assignee: Universitaire De Reims. Priority date: 16/09/2019. Publication date: 27/01/2022.
  10. Berruyer C, Martin FM, Castellano R, Macone A, Malergue F, Garrido-Urbani S, Millet V, Imbert J, Duprè S and Pitari G et al.. (2004) Vanin-1-/- mice exhibit a glutathione-mediated tissue resistance to oxidative stress. Mol Cell Biol 24: 7214-24 [PMID:15282320]
  11. Berruyer C, Pouyet L, Millet V, Martin FM, LeGoffic A, Canonici A, Garcia S, Bagnis C, Naquet P and Galland F. (2006) Vanin-1 licenses inflammatory mediator production by gut epithelial cells and controls colitis by antagonizing peroxisome proliferator-activated receptor gamma activity. J Exp Med 203: 2817-27 [PMID:17145956]
  12. Bisogno T, Howell F, Williams G, Minassi A, Cascio MG, Ligresti A, Matias I, Schiano-Moriello A, Paul P and Williams EJ et al.. (2003) Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J Cell Biol 163: 463-8 [PMID:14610053]
  13. Blackie JA, Bloomer JC, Brown MJ, Cheng HY, Hammond B, Hickey DM, Ife RJ, Leach CA, Lewis VA and Macphee CH et al.. (2003) The identification of clinical candidate SB-480848: a potent inhibitor of lipoprotein-associated phospholipase A2. Bioorg Med Chem Lett 13: 1067-70 [PMID:12643913]
  14. Blocher R, Lamers C, Wittmann SK, Diehl O, Hanke T, Merk D, Steinhilber D, Schubert-Zsilavecz M, Kahnt AS and Proschak E. (2016) Design and synthesis of fused soluble epoxide hydrolase/peroxisome proliferator-activated receptor modulators Medchemcomm 7: 1209-1216
  15. Blöcher R, Wagner KM, Gopireddy RR, Harris TR, Wu H, Barnych B, Hwang SH, Xiang YK, Proschak E and Morisseau C et al.. (2018) Orally Available Soluble Epoxide Hydrolase/Phosphodiesterase 4 Dual Inhibitor Treats Inflammatory Pain. J Med Chem 61: 3541-3550 [PMID:29614224]
  16. Boersma YL, Newman J, Adams TE, Cowieson N, Krippner G, Bozaoglu K and Peat TS. (2014) The structure of vanin 1: a key enzyme linking metabolic disease and inflammation. Acta Crystallogr D Biol Crystallogr 70: 3320-9 [PMID:25478849]
  17. Bollbuck B, Merkert C, Miltz W and Roehn T. (2015) Heteroaryl butanoic acid derivatives as lta4h inhibitors Patent number: WO2015092740A1. Assignee: Novartis Ag. Priority date: 20/12/2013. Publication date: 25/06/2015.
  18. Bonnard E, Poras H, Nadal X, Maldonado R, Fournié-Zaluski MC and Roques BP. (2015) Long-lasting oral analgesic effects of N-protected aminophosphinic dual ENKephalinase inhibitors (DENKIs) in peripherally controlled pain. Pharmacol Res Perspect 3: e00116 [PMID:25692029]
  19. Borg-Capra Catherine Sylvia et al.. (2001) Method of screening for triacyglycerol hydrolase inhibitors. Patent number: WO2001016358. Assignee: Glaxo (now GSK). Priority date: 23/08/1999. Publication date: 08/03/2001.
  20. Bosanac T, Burke MJ, Cook BN, DiSalvo DT, Kirrane Jr TM and Shen Y. (2018) HETEROAROMATIC COMPOUNDS AS VANIN INHIBITORS Patent number: WO2018228934. Assignee: BOEHRINGER INGELHEIM INTERNATIONAL GMBH. Priority date: 12/06/2017. Publication date: 20/12/2018.
  21. Boyle NA, Talesa V, Giovannini E, Rosi G and Norton SJ. (1997) Synthesis and study of thiocarbonate derivatives of choline as potential inhibitors of acetylcholinesterase. J Med Chem 40: 3009-13 [PMID:9301662]
  22. Brunschweiger A, Iqbal J, Umbach F, Scheiff AB, Munkonda MN, Sévigny J, Knowles AF and Müller CE. (2008) Selective nucleoside triphosphate diphosphohydrolase-2 (NTPDase2) inhibitors: nucleotide mimetics derived from uridine-5'-carboxamide. J Med Chem 51: 4518-28 [PMID:18630897]
  23. Buneman P, Christie G, Davies JA, Dimitrellou R, Harding SD, Pawson AJ, Sharman JL and Wu Y. (2020) Why data citation isn't working, and what to do about it Database 2020 [PMID:32367113]
  24. Bustanji Y, Issa A, Mohammed M, Hudaib M, Tawah, K, Alkhatib H, Almarsi I and Al-Khalidi B. (2010) Inhibition of hormone sensitive lipase and pancreatic lipase by Rosmarinus officinalis extract and selected phenolic constituents. Journal of Medicinal Plants Research 4: 2235-2242
  25. Butini S, Campiani G, Borriello M, Gemma S, Panico A, Persico M, Catalanotti B, Ros S, Brindisi M and Agnusdei M et al.. (2008) Exploiting protein fluctuations at the active-site gorge of human cholinesterases: further optimization of the design strategy to develop extremely potent inhibitors. J Med Chem 51: 3154-70 [PMID:18479118]
  26. Bühler KM, Huertas E, Echeverry-Alzate V, Giné E, Moltó E, Montoliu L and López-Moreno JA. (2014) Risky alcohol consumption in young people is associated with the fatty acid amide hydrolase gene polymorphism C385A and affective rating of drug pictures. Mol Genet Genomics 289: 279-89 [PMID:24407958]
  27. Cai XY, Wang XF, Li J, Dong JN, Liu JQ, Li NP, Yun B and Xia RL. (2015) Overexpression of CD39 and high tumoral CD39(+)/CD8(+) ratio are associated with adverse prognosis in resectable gastric cancer. Int J Clin Exp Pathol 8: 14757-64 [PMID:26823801]
  28. Cajanus K, Holmström EJ, Wessman M, Anttila V, Kaunisto MA and Kalso E. (2016) Effect of endocannabinoid degradation on pain: role of FAAH polymorphisms in experimental and postoperative pain in women treated for breast cancer. Pain 157: 361-9 [PMID:26808012]
  29. Canale FP, Ramello MC, Núñez N, Araujo Furlan CL, Bossio SN, Gorosito Serrán M, Tosello Boari J, Del Castillo A, Ledesma M and Sedlik C et al.. (2018) CD39 Expression Defines Cell Exhaustion in Tumor-Infiltrating CD8+ T Cells. Cancer Res 78: 115-128 [PMID:29066514]
  30. Cardozo MG, Iimura Y, Sugimoto H, Yamanishi Y and Hopfinger AJ. (1992) QSAR analyses of the substituted indanone and benzylpiperidine rings of a series of indanone-benzylpiperidine inhibitors of acetylcholinesterase. J Med Chem 35: 584-9 [PMID:1738151]
  31. Casimiro-Garcia A, Condon JS, Flick AC, Gopalsamy A, Kirincich SJ, Mathias JP, Strobach JW, Xiang JS, Xing LH and Wang X. (2018) Novel heterocyclic compounds as inhibitors of vanin-1 enzyme Patent number: US20180148420A1. Assignee: Pfizer Inc. Priority date: 29/05/2015. Publication date: 31/05/2018.
  32. Chang JW, Niphakis MJ, Lum KM, Cognetta 3rd AB, Wang C, Matthews ML, Niessen S, Buczynski MW, Parsons LH and Cravatt BF. (2012) Highly selective inhibitors of monoacylglycerol lipase bearing a reactive group that is bioisosteric with endocannabinoid substrates. Chem Biol 19: 579-88 [PMID:22542104]
  33. Chappel S, Lake A, Warren M, Dulak A, Devereaux E, Holland PM, Zaidi T, Rausch M, Prinz B and Nielson NP et al.. (2020) Antibodies that bind CD39 and uses thereof Patent number: US10738128B2. Assignee: Surface Oncology Inc. Priority date: 14/03/2018. Publication date: 11/08/2020.
  34. Chen X, Wang S, Wu N and Yang CS. (2004) Leukotriene A4 hydrolase as a target for cancer prevention and therapy. Curr Cancer Drug Targets 4: 267-83 [PMID:15134534]
  35. Chen Y, Chen L, Xu H, Cao R, Morisseau C, Zhang M, Shi Y, Hammock BD, Wang J and Zhuang J et al.. (2023) Structure-Directed Discovery of Potent Soluble Epoxide Hydrolase Inhibitors for the Treatment of Inflammatory Diseases. J Med Chem [PMID:36689364]
  36. Cheung J, Rudolph MJ, Burshteyn F, Cassidy MS, Gary EN, Love J, Franklin MC and Height JJ. (2012) Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem 55: 10282-6 [PMID:23035744]
  37. Cisar JS, Weber OD, Clapper JR, Blankman JL, Henry CL, Simon GM, Alexander JP, Jones TK, Ezekowitz RAB and O'Neill GP et al.. (2018) Identification of ABX-1431, a Selective Inhibitor of Monoacylglycerol Lipase and Clinical Candidate for Treatment of Neurological Disorders. J Med Chem 61: 9062-9084 [PMID:30067909]
  38. Clapper JR, Henry CL, Niphakis MJ, Knize AM, Coppola AR, Simon GM, Ngo N, Herbst RA, Herbst DM and Reed AW et al.. (2018) Monoacylglycerol Lipase Inhibition in Human and Rodent Systems Supports Clinical Evaluation of Endocannabinoid Modulators. J Pharmacol Exp Ther 367: 494-508 [PMID:30305428]
  39. Clark JK, Cowley P, Muir AW, Palin R, Pow E, Prosser AB, Taylor R and Zhang MQ. (2002) Quaternary salts of E2020 analogues as acetylcholinesterase inhibitors for the reversal of neuromuscular block. Bioorg Med Chem Lett 12: 2565-8 [PMID:12182861]
  40. Cravatt BF, Demarest K, Patricelli MP, Bracey MH, Giang DK, Martin BR and Lichtman AH. (2001) Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc Natl Acad Sci USA 98: 9371-6 [PMID:11470906]
  41. de Jong JC, Sørensen LG, Tornqvist H and Jacobsen P. (2004) Carbazates as potent inhibitors of hormone-sensitive lipase. Bioorg Med Chem Lett 14: 1741-4 [PMID:15026062]
  42. Deng H, Kooijman S, van den Nieuwendijk AM, Ogasawara D, van der Wel T, van Dalen F, Baggelaar MP, Janssen FJ, van den Berg RJ and den Dulk H et al.. (2017) Triazole Ureas Act as Diacylglycerol Lipase Inhibitors and Prevent Fasting-Induced Refeeding. J Med Chem 60: 428-440 [PMID:27992221]
  43. Draheim SE, Bach NJ, Dillard RD, Berry DR, Carlson DG, Chirgadze NY, Clawson DK, Hartley LW, Johnson LM and Jones ND et al.. (1996) Indole inhibitors of human nonpancreatic secretory phospholipase A2. 3. Indole-3-glyoxamides. J Med Chem 39: 5159-75 [PMID:8978844]
  44. Dreyfus NJF and Lindsay-Scott PJ. (2018) N-[4-fluoro-5-[[(2s,4s)-2-methyl-4-[(5-methyl-1,2,4-oxadiazol-3-yl)methoxy]-1-piperidyl]methyl]thiazol-2-yl]acetamide as oga inhibitor Patent number: WO2018140299A1. Assignee: Eli Lilly And Company. Priority date: 27/01/2017. Publication date: 02/08/2018.
  45. Enjyoji K, Kotani K, Thukral C, Blumel B, Sun X, Wu Y, Imai M, Friedman D, Csizmadia E and Bleibel W et al.. (2008) Deletion of cd39/entpd1 results in hepatic insulin resistance. Diabetes 57: 2311-20 [PMID:18567823]
  46. Enjyoji K, Sévigny J, Lin Y, Frenette PS, Christie PD, Esch 2nd JS, Imai M, Edelberg JM, Rayburn H and Lech M et al.. (1999) Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation. Nat Med 5: 1010-7 [PMID:10470077]
  47. Fornage M, Boerwinkle E, Doris PA, Jacobs D, Liu K and Wong ND. (2004) Polymorphism of the soluble epoxide hydrolase is associated with coronary artery calcification in African-American subjects: The Coronary Artery Risk Development in Young Adults (CARDIA) study. Circulation 109: 335-9 [PMID:14732757]
  48. Galland F, Malergue F, Bazin H, Mattei MG, Aurrand-Lions M, Theillet C and Naquet P. (1998) Two human genes related to murine vanin-1 are located on the long arm of human chromosome 6. Genomics 53: 203-13 [PMID:9790769]
  49. Galli A, Mori F, Benini L and Cacciarelli N. (1994) Acetylcholinesterase protection and the anti-diisopropylfluorophosphate efficacy of E2020. Eur J Pharmacol 270: 189-93 [PMID:8039548]
  50. Garscha U, Romp E, Pace S, Rossi A, Temml V, Schuster D, König S, Gerstmeier J, Liening S and Werner M et al.. (2017) Pharmacological profile and efficiency in vivo of diflapolin, the first dual inhibitor of 5-lipoxygenase-activating protein and soluble epoxide hydrolase. Sci Rep 7: 9398 [PMID:28839250]
  51. Gasmi L and McLennan AG. (2001) The mouse Nudt7 gene encodes a peroxisomal nudix hydrolase specific for coenzyme A and its derivatives. Biochem J 357: 33-8 [PMID:11415433]
  52. Gensollen T, Bourges C, Rihet P, Rostan A, Millet V, Noguchi T, Bourdon V, Sobol H, Dubuquoy L and Bertin B et al.. (2013) Functional polymorphisms in the regulatory regions of the VNN1 gene are associated with susceptibility to inflammatory bowel diseases. Inflamm Bowel Dis 19: 2315-25 [PMID:23949622]
  53. Ghafouri N, Tiger G, Razdan RK, Mahadevan A, Pertwee RG, Martin BR and Fowler CJ. (2004) Inhibition of monoacylglycerol lipase and fatty acid amide hydrolase by analogues of 2-arachidonoylglycerol. Br J Pharmacol 143: 774-84 [PMID:15492019]
  54. Giacobini E. (2003) Cholinesterases: new roles in brain function and in Alzheimer's disease. Neurochem Res 28: 515-22 [PMID:12675140]
  55. Giang DK and Cravatt BF. (1997) Molecular characterization of human and mouse fatty acid amide hydrolases. Proc Natl Acad Sci USA 94: 2238-42 [PMID:9122178]
  56. Goodman KB, Bury MJ, Cheung M, Cichy-Knight MA, Dowdell SE, Dunn AK, Lee D, Lieby JA, Moore ML and Scherzer DA et al.. (2009) Discovery of potent, selective sulfonylfuran urea endothelial lipase inhibitors. Bioorg Med Chem Lett 19: 27-30 [PMID:19058966]
  57. Habib AM, Okorokov AL, Hill MN, Bras JT, Lee MC, Li S, Gossage SJ, van Drimmelen M, Morena M and Houlden H et al.. (2019) Microdeletion in a FAAH pseudogene identified in a patient with high anandamide concentrations and pain insensitivity. Br J Anaesth 123: e249-e253 [PMID:30929760]
  58. Hammock B and Kodani S. (2017) Inhibitors for soluble epoxide hydrolase (seh) and fatty acid amide hydrolase (faah) Patent number: WO2017160861A1. Assignee: The Regents Of The University Of California. Priority date: 15/03/2016. Publication date: 21/09/2017.
  59. Hansford KA, Reid RC, Clark CI, Tyndall JD, Whitehouse MW, Guthrie T, McGeary RP, Schafer K, Martin JL and Fairlie DP. (2003) D-Tyrosine as a chiral precusor to potent inhibitors of human nonpancreatic secretory phospholipase A2 (IIa) with antiinflammatory activity. Chembiochem 4: 181-5 [PMID:12616631]
  60. Hosohata K, Ando H and Fujimura A. (2014) Early detection of renal injury using urinary vanin-1 in rats with experimental colitis. J Appl Toxicol 34: 184-90 [PMID:23307618]
  61. Hsu KL, Tsuboi K, Adibekian A, Pugh H, Masuda K and Cravatt BF. (2012) DAGLβ inhibition perturbs a lipid network involved in macrophage inflammatory responses. Nat Chem Biol 8: 999-1007 [PMID:23103940]
  62. Häusler SF, Del Barrio IM, Diessner J, Stein RG, Strohschein J, Hönig A, Dietl J and Wischhusen J. (2014) Anti-CD39 and anti-CD73 antibodies A1 and 7G2 improve targeted therapy in ovarian cancer by blocking adenosine-dependent immune evasion. Am J Transl Res 6: 129-39 [PMID:24489992]
  63. Ikeda S, Sugiyama H, Tokuhara H, Murakami M, Nakamura M, Oguro Y, Aida J, Morishita N, Sogabe S and Dougan DR et al.. (2021) Design and Synthesis of Novel Spiro Derivatives as Potent and Reversible Monoacylglycerol Lipase (MAGL) Inhibitors: Bioisosteric Transformation from 3-Oxo-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl Moiety. J Med Chem 64: 11014-11044 [PMID:34328319]
  64. Imig JD and Hammock BD. (2009) Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases. Nat Rev Drug Discov 8: 794-805 [PMID:19794443]
  65. Jackowski S and Leonardi R. (2014) Deregulated coenzyme A, loss of metabolic flexibility and diabetes. Biochem Soc Trans 42: 1118-22 [PMID:25110012]
  66. Jiang XY, Chen TK, Zhou JT, He SY, Yang HY, Chen Y, Qu W, Feng F and Sun HP. (2018) Dual GSK-3β/AChE Inhibitors as a New Strategy for Multitargeting Anti-Alzheimer's Disease Drug Discovery. ACS Med Chem Lett 9: 171-176 [PMID:29541355]
  67. Jin W, Millar JS, Broedl U, Glick JM and Rader DJ. (2003) Inhibition of endothelial lipase causes increased HDL cholesterol levels in vivo. J Clin Invest 111: 357-62 [PMID:12569161]
  68. Johnson DS, Stiff C, Lazerwith SE, Kesten SR, Fay LK, Morris M, Beidler D, Liimatta MB, Smith SE and Dudley DT et al.. (2011) Discovery of PF-04457845: A Highly Potent, Orally Bioavailable, and Selective Urea FAAH Inhibitor. ACS Med Chem Lett 2: 91-96 [PMID:21666860]
  69. Johnston M, Bhatt SR, Sikka S, Mercier RW, West JM, Makriyannis A, Gatley SJ and Duclos Jr RI. (2012) Assay and inhibition of diacylglycerol lipase activity. Bioorg Med Chem Lett 22: 4585-92 [PMID:22738638]
  70. Kansas GS, Wood GS and Tedder TF. (1991) Expression, distribution, and biochemistry of human CD39. Role in activation-associated homotypic adhesion of lymphocytes. J Immunol 146: 2235-44 [PMID:1672348]
  71. Kavian N, Mehlal S, Marut W, Servettaz A, Giessner C, Bourges C, Nicco C, Chéreau C, Lemaréchal H and Dutilh MF et al.. (2016) Imbalance of the Vanin-1 Pathway in Systemic Sclerosis. J Immunol 197: 3326-3335 [PMID:27647831]
  72. Kavitha CV, Gaonkar SL, Narendra Sharath Chandra JN, Sadashiva CT and Rangappa KS. (2007) Synthesis and screening for acetylcholinesterase inhibitor activity of some novel 2-butyl-1,3-diaza-spiro[4,4]non-1-en-4-ones: derivatives of irbesartan key intermediate. Bioorg Med Chem 15: 7391-8 [PMID:17888667]
  73. Keith JM, Apodaca R, Tichenor M, Xiao W, Jones W, Pierce J, Seierstad M, Palmer J, Webb M and Karbarz M et al.. (2012) Aryl Piperazinyl Ureas as Inhibitors of Fatty Acid Amide Hydrolase (FAAH) in Rat, Dog, and Primate. ACS Med Chem Lett 3: 823-7 [PMID:24900385]
  74. Keith JM, Apodaca R, Xiao W, Seierstad M, Pattabiraman K, Wu J, Webb M, Karbarz MJ, Brown S and Wilson S et al.. (2008) Thiadiazolopiperazinyl ureas as inhibitors of fatty acid amide hydrolase. Bioorg Med Chem Lett 18: 4838-43 [PMID:18693015]
  75. Keith JM and Liu J. (2011) Modulators of fatty acid amide hydrolase. Patent number: WO2011139951 A1. Assignee: Janssen Pharmaceutica Nv. Priority date: 03/05/2010. Publication date: 10/11/2011.
  76. Kiss LE et al.. (2010) Pharmaceutical compounds. Patent number: WO2010074588 A2. Assignee: BIAL- PORTELA & Cª, S.A. Priority date: 24/12/2008. Publication date: 01/07/2010.
  77. Kiss LE, Ferreira HS, Beliaev A, Torrao L and Bonafacio MJ Learmonth DA.. (2011) Design, synthesis, and structure–activity relationships of 1,3,4-oxadiazol-2(3H)-ones as novel FAAH inhibitors. Medchemcomm 2: 889-894
  78. Klingler FM, Wolf M, Wittmann S, Gribbon P and Proschak E. (2016) Bacterial Expression and HTS Assessment of Soluble Epoxide Hydrolase Phosphatase. J Biomol Screen 21: 689-94 [PMID:27009944]
  79. Knight MA, Hernandez D, Diede SJ, Dauwerse HG, Rafferty I, van de Leemput J, Forrest SM, Gardner RJ, Storey E and van Ommen GJ et al.. (2008) A duplication at chromosome 11q12.2-11q12.3 is associated with spinocerebellar ataxia type 20. Hum Mol Genet 17: 3847-53 [PMID:18801880]
  80. Knowles AF and Chiang WC. (2003) Enzymatic and transcriptional regulation of human ecto-ATPase/E-NTPDase 2. Arch Biochem Biophys 418: 217-27 [PMID:14522593]
  81. Kodani SD, Wan D, Wagner KM, Hwang SH, Morisseau C and Hammock BD. (2018) Design and Potency of Dual Soluble Epoxide Hydrolase/Fatty Acid Amide Hydrolase Inhibitors. ACS Omega 3: 14076-14086 [PMID:30411058]
  82. Kramer JS, Woltersdorf S, Duflot T, Hiesinger K, Lillich FF, Knöll F, Wittmann SK, Klingler FM, Brunst S and Chaikuad A et al.. (2019) Discovery of the First in Vivo Active Inhibitors of the Soluble Epoxide Hydrolase Phosphatase Domain. J Med Chem 62: 8443-8460 [PMID:31436984]
  83. Kruse S, Mao XQ, Heinzmann A, Blattmann S, Roberts MH, Braun S, Gao PS, Forster J, Kuehr J and Hopkin JM et al.. (2000) The Ile198Thr and Ala379Val variants of plasmatic PAF-acetylhydrolase impair catalytical activities and are associated with atopy and asthma. Am J Hum Genet 66: 1522-30 [PMID:10733466]
  84. Lavieri RR, Scott SA, Selvy PE, Kim K, Jadhav S, Morrison RD, Daniels JS, Brown HA and Lindsley CW. (2010) Design, synthesis, and biological evaluation of halogenated N-(2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)benzamides: discovery of an isoform-selective small molecule phospholipase D2 inhibitor. J Med Chem 53: 6706-19 [PMID:20735042]
  85. Lecoutey C, Hedou D, Freret T, Giannoni P, Gaven F, Since M, Bouet V, Ballandonne C, Corvaisier S and Malzert Fréon A et al.. (2014) Design of donecopride, a dual serotonin subtype 4 receptor agonist/acetylcholinesterase inhibitor with potential interest for Alzheimer's disease treatment. Proc Natl Acad Sci USA 111: E3825-30 [PMID:25157130]
  86. Lee CR, North KE, Bray MS, Fornage M, Seubert JM, Newman JW, Hammock BD, Couper DJ, Heiss G and Zeldin DC. (2006) Genetic variation in soluble epoxide hydrolase (EPHX2) and risk of coronary heart disease: The Atherosclerosis Risk in Communities (ARIC) study. Hum Mol Genet 15: 1640-9 [PMID:16595607]
  87. Lee KH, Petruncio G, Shim A, Burdick M, Zhang Z, Shim YM, Noble SM and Paige M. (2019) Effect of Modifier Structure on the Activation of Leukotriene A4 Hydrolase Aminopeptidase Activity. J Med Chem 62: 10605-10616 [PMID:31751136]
  88. Liu Q, Huang F, Yuan X, Wang K, Zou Y, Shen J and Xu Y. (2017) Structure-Guided Discovery of Novel, Potent, and Orally Bioavailable Inhibitors of Lipoprotein-Associated Phospholipase A2. J Med Chem 60: 10231-10244 [PMID:29193967]
  89. Long JZ, Li W, Booker L, Burston JJ, Kinsey SG, Schlosburg JE, Pavón FJ, Serrano AM, Selley DE and Parsons LH et al.. (2009) Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat Chem Biol 5: 37-44 [PMID:19029917]
  90. Long JZ, Nomura DK, Vann RE, Walentiny DM, Booker L, Jin X, Burston JJ, Sim-Selley LJ, Lichtman AH and Wiley JL et al.. (2009) Dual blockade of FAAH and MAGL identifies behavioral processes regulated by endocannabinoid crosstalk in vivo. Proc Natl Acad Sci USA 106: 20270-5 [PMID:19918051]
  91. Lopez I, Arnold RS and Lambeth JD. (1998) Cloning and initial characterization of a human phospholipase D2 (hPLD2). ADP-ribosylation factor regulates hPLD2. J Biol Chem 273: 12846-52 [PMID:9582313]
  92. Luo W, Yu QS, Kulkarni SS, Parrish DA, Holloway HW, Tweedie D, Shafferman A, Lahiri DK, Brossi A and Greig NH. (2006) Inhibition of human acetyl- and butyrylcholinesterase by novel carbamates of (-)- and (+)-tetrahydrofurobenzofuran and methanobenzodioxepine. J Med Chem 49: 2174-85 [PMID:16570913]
  93. MacPhee CH, Moores KE, Boyd HF, Dhanak D, Ife RJ, Leach CA, Leake DS, Milliner KJ, Patterson RA and Suckling KE et al.. (1999) Lipoprotein-associated phospholipase A2, platelet-activating factor acetylhydrolase, generates two bioactive products during the oxidation of low-density lipoprotein: use of a novel inhibitor. Biochem J 338 ( Pt 2): 479-87 [PMID:10024526]
  94. Mateo J, Harden TK and Boyer JL. (1999) Functional expression of a cDNA encoding a human ecto-ATPase. Br J Pharmacol 128: 396-402 [PMID:10510450]
  95. Migliore M, Habrant D, Sasso O, Albani C, Bertozzi SM, Armirotti A, Piomelli D and Scarpelli R. (2016) Potent multitarget FAAH-COX inhibitors: Design and structure-activity relationship studies. Eur J Med Chem 109: 216-37 [PMID:26774927]
  96. Moreno-Sanz G, Duranti A, Melzig L, Fiorelli C, Ruda GF, Colombano G, Mestichelli P, Sanchini S, Tontini A and Mor M et al.. (2013) Synthesis and structure-activity relationship studies of O-biphenyl-3-yl carbamates as peripherally restricted fatty acid amide hydrolase inhibitors. J Med Chem 56: 5917-30 [PMID:23822179]
  97. Morisseau C and Hammock BD. (2013) Impact of soluble epoxide hydrolase and epoxyeicosanoids on human health. Annu Rev Pharmacol Toxicol 53: 37-58 [PMID:23020295]
  98. Musilek K, Komloova M, Holas O, Horova A, Pohanka M, Gunn-Moore F, Dohnal V, Dolezal M and Kuca K. (2011) Mono-oxime bisquaternary acetylcholinesterase reactivators with prop-1,3-diyl linkage-Preparation, in vitro screening and molecular docking. Bioorg Med Chem 19: 754-62 [PMID:21215642]
  99. Naquet P, Pitari G, Duprè S and Galland F. (2014) Role of the Vnn1 pantetheinase in tissue tolerance to stress. Biochem Soc Trans 42: 1094-100 [PMID:25110008]
  100. Newman JW, Morisseau C, Harris TR and Hammock BD. (2003) The soluble epoxide hydrolase encoded by EPXH2 is a bifunctional enzyme with novel lipid phosphate phosphatase activity. Proc Natl Acad Sci USA 100: 1558-63 [PMID:12574510]
  101. Nicolet Y, Lockridge O, Masson P, Fontecilla-Camps JC and Nachon F. (2003) Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. J Biol Chem 278: 41141-7 [PMID:12869558]
  102. Niphakis MJ, Cognetta 3rd AB, Chang JW, Buczynski MW, Parsons LH, Byrne F, Burston JJ, Chapman V and Cravatt BF. (2013) Evaluation of NHS carbamates as a potent and selective class of endocannabinoid hydrolase inhibitors. ACS Chem Neurosci 4: 1322-32 [PMID:23731016]
  103. Niphakis MJ, Johnson DS, Ballard TE, Stiff C and Cravatt BF. (2012) O-hydroxyacetamide carbamates as a highly potent and selective class of endocannabinoid hydrolase inhibitors. ACS Chem Neurosci 3: 418-26 [PMID:22860211]
  104. Ogasawara D, Deng H, Viader A, Baggelaar MP, Breman A, den Dulk H, van den Nieuwendijk AM, van den Nieuwendijk AM, Soethoudt M and van der Wel T et al.. (2016) Rapid and profound rewiring of brain lipid signaling networks by acute diacylglycerol lipase inhibition. Proc Natl Acad Sci USA 113: 26-33 [PMID:26668358]
  105. Orning L, Krivi G and Fitzpatrick FA. (1991) Leukotriene A4 hydrolase. Inhibition by bestatin and intrinsic aminopeptidase activity establish its functional resemblance to metallohydrolase enzymes. J Biol Chem 266: 1375-8 [PMID:1846352]
  106. Oslund RC, Cermak N and Gelb MH. (2008) Highly specific and broadly potent inhibitors of mammalian secreted phospholipases A2. J Med Chem 51: 4708-14 [PMID:18605714]
  107. Penning TD, Askonas LJ, Djuric SW, Haack RA, Yu SS, Michener ML, Krivi GG and Pyla E. (1995) Kelatorphan and related analogs: potent and selective inhibitors of leukotriene A4 hydrolase Bioorganic and Medicinal Chemistry Letters 5: 2517-2522
  108. Penning TD, Chandrakumar NS, Chen BB, Chen HY, Desai BN, Djuric SW, Docter SH, Gasiecki AF, Haack RA and Miyashiro JM et al.. (2000) Structure-activity relationship studies on 1-[2-(4-Phenylphenoxy)ethyl]pyrrolidine (SC-22716), a potent inhibitor of leukotriene A(4) (LTA(4)) hydrolase. J Med Chem 43: 721-35 [PMID:10691697]
  109. Petersen A, Benz J, Grether U, Hornsperger B, Kocer B, Kuhn B, Richter H, Tsuchiya S, Qui Y and Chen R. (2019) Octahydropyrido[1,2-alpha]pyrazines as magl inhibitors Patent number: WO2019134985A1. Assignee: Hoffmann-La Roche. Priority date: 08/01/2018. Publication date: 11/07/2019.
  110. Pouyet L, Roisin-Bouffay C, Clément A, Millet V, Garcia S, Chasson L, Issaly N, Rostan A, Hofman P and Naquet P et al.. (2010) Epithelial vanin-1 controls inflammation-driven carcinogenesis in the colitis-associated colon cancer model. Inflamm Bowel Dis 16: 96-104 [PMID:19572375]
  111. Preininger AM, Henage LG, Oldham WM, Yoon EJ, Hamm HE and Brown HA. (2006) Direct modulation of phospholipase D activity by Gbetagamma. Mol Pharmacol 70: 311-8 [PMID:16638972]
  112. Quattropani A, Kulkarni SS and Giri AG. (2017) Glycosidase inhibitors Patent number: WO2017144639A1. Assignee: Asceneuron SA. Priority date: 25/02/2016. Publication date: 31/08/2017.
  113. Reilly SJ, Tillander V, Ofman R, Alexson SE and Hunt MC. (2008) The nudix hydrolase 7 is an Acyl-CoA diphosphatase involved in regulating peroxisomal coenzyme A homeostasis. J Biochem 144: 655-63 [PMID:18799520]
  114. Resnick E, Bradley A, Gan J, Douangamath A, Krojer T, Sethi R, Aimon A, Amitai G, Belini D, Bennett J and Fairhead M et al.. (2018) Rapid covalent-probe discovery by electrophile fragment screening. bioRxiv
  115. Roughley S, Walls S, Hart T, Parsons R, Brough P, Graham C and Macias A. (2009) Azetidine derivatives. Patent number: WO2009109743 A1. Assignee: Vernalis (R&D) Ltd.. Priority date: 04/03/2008. Publication date: 11/09/2009.
  116. Sandanayaka V, Mamat B, Mishra RK, Winger J, Krohn M, Zhou LM, Keyvan M, Enache L, Sullins D and Onua E et al.. (2010) Discovery of 4-[(2S)-2-{[4-(4-chlorophenoxy)phenoxy]methyl}-1-pyrrolidinyl]butanoic acid (DG-051) as a novel leukotriene A4 hydrolase inhibitor of leukotriene B4 biosynthesis. J Med Chem 53: 573-85 [PMID:19950900]
  117. Santoni G, de Sousa J, de la Mora E, Dias J, Jean L, Sussman JL, Silman I, Renard PY, Brown RCD and Weik M et al.. (2018) Structure-Based Optimization of Nonquaternary Reactivators of Acetylcholinesterase Inhibited by Organophosphorus Nerve Agents. J Med Chem 61: 7630-7639 [PMID:30125110]
  118. Sarri E, Pardo R, Fensome-Green A and Cockcroft S. (2003) Endogenous phospholipase D2 localizes to the plasma membrane of RBL-2H3 mast cells and can be distinguished from ADP ribosylation factor-stimulated phospholipase D1 activity by its specific sensitivity to oleic acid. Biochem J 369: 319-29 [PMID:12374567]
  119. Schierle S, Flauaus C, Heitel P, Willems S, Schmidt J, Kaiser A, Weizel L, Goebel T, Kahnt AS and Geisslinger G et al.. (2018) Boosting Anti-Inflammatory Potency of Zafirlukast by Designed Polypharmacology. J Med Chem 61: 5758-5764 [PMID:29878767]
  120. Scott SA, Selvy PE, Buck JR, Cho HP, Criswell TL, Thomas AL, Armstrong MD, Arteaga CL, Lindsley CW and Brown HA. (2009) Design of isoform-selective phospholipase D inhibitors that modulate cancer cell invasiveness. Nat Chem Biol 5: 108-17 [PMID:19136975]
  121. Selnick HG, Hess JF, Tang C, Liu K, Schachter JB, Ballard JE, Marcus J, Klein DJ, Wang X and Pearson M et al.. (2019) Discovery of MK-8719, a Potent O-GlcNAcase Inhibitor as a Potential Treatment for Tauopathies. J Med Chem 62: 10062-10097 [PMID:31487175]
  122. Snyder DW, Bach NJ, Dillard RD, Draheim SE, Carlson DG, Fox N, Roehm NW, Armstrong CT, Chang CH and Hartley LW et al.. (1999) Pharmacology of LY315920/S-5920, [[3-(aminooxoacetyl)-2-ethyl-1- (phenylmethyl)-1H-indol-4-yl]oxy] acetate, a potent and selective secretory phospholipase A2 inhibitor: A new class of anti-inflammatory drugs, SPI. J Pharmacol Exp Ther 288: 1117-24 [PMID:10027849]
  123. Song J, Baek IJ, Chun CH and Jin EJ. (2018) Dysregulation of the NUDT7-PGAM1 axis is responsible for chondrocyte death during osteoarthritis pathogenesis. Nat Commun 9: 3427 [PMID:30143643]
  124. Spadoni G, Bedini A, Furiassi L, Mari M, Mor M, Scalvini L, Lodola A, Ghidini A, Lucini V and Dugnani S et al.. (2018) Identification of Bivalent Ligands with Melatonin Receptor Agonist and Fatty Acid Amide Hydrolase (FAAH) Inhibitory Activity That Exhibit Ocular Hypotensive Effect in the Rabbit. J Med Chem 61: 7902-7916 [PMID:30126274]
  125. Springman EB, Pugh MM, Bhatt L and Grosswald R. (2014) Methods of inhibiting leukotriene a4 hydrolase Patent number: WO2014164658A1. Assignee: Celtaxsys, Inc.. Priority date: 13/03/2013. Publication date: 09/10/2014.
  126. Stagg J. (2012) The double-edge sword effect of anti-CD73 cancer therapy. Oncoimmunology 1: 217-218 [PMID:22720247]
  127. Stsiapanava A, Samuelsson B and Haeggström JZ. (2017) Capturing LTA4 hydrolase in action: Insights to the chemistry and dynamics of chemotactic LTB4 synthesis. Proc Natl Acad Sci USA 114: 9689-9694 [PMID:28827365]
  128. Sun S, Dean R, Jia Q, Zenova A, Zhong J, Grayson C, Xie C, Lindgren A, Samra P and Sojo L et al.. (2013) Discovery of XEN445: a potent and selective endothelial lipase inhibitor raises plasma HDL-cholesterol concentration in mice. Bioorg Med Chem 21: 7724-34 [PMID:24211162]
  129. Sánchez-Muñoz F, Amezcua-Guerra LM, Macías-Palacios M, Márquez-Velasco R and Bojalil R. (2013) Vanin-1 as a potential novel biomarker for active nephritis in systemic lupus erythematosus. Lupus 22: 333-5 [PMID:23390193]
  130. Taylor SJ, Soleymanzadeh F, Eldrup AB, Farrow NA, Muegge I, Kukulka A, Kabcenell AK and De Lombaert S. (2009) Design and synthesis of substituted nicotinamides as inhibitors of soluble epoxide hydrolase. Bioorg Med Chem Lett 19: 5864-8 [PMID:19758802]
  131. Tholander F, Muroya A, Roques BP, Fournié-Zaluski MC, Thunnissen MM and Haeggström JZ. (2008) Structure-based dissection of the active site chemistry of leukotriene A4 hydrolase: implications for M1 aminopeptidases and inhibitor design. Chem Biol 15: 920-9 [PMID:18804029]
  132. Tora G, Kim SH, Pi Z, Johnson JA, Jiang J, Phillips M, Lloyd J, Abell LM, Lu H and Locke G et al.. (2020) Identification of Reversible Small Molecule Inhibitors of Endothelial Lipase (EL) That Demonstrate HDL-C Increase In Vivo. J Med Chem 63: 1660-1670 [PMID:31990537]
  133. Unterschemmann K, Ehrmann A, Herzig I, Andreevski AL, Lustig K, Schmeck C, Eitner F and Grundmann M. (2021) Pharmacological inhibition of Vanin-1 is not protective in models of acute and chronic kidney disease. Am J Physiol Renal Physiol 320: F61-F73 [PMID:33196323]
  134. van Diepen JA, Jansen PA, Ballak DB, Hijmans A, Rutjes FP, Tack CJ, Netea MG, Schalkwijk J and Stienstra R. (2016) Genetic and pharmacological inhibition of vanin-1 activity in animal models of type 2 diabetes. Sci Rep 6: 21906 [PMID:26932716]
  135. van Esbroeck ACM, Janssen APA, Cognetta 3rd AB, Ogasawara D, Shpak G, van der Kroeg M, Kantae V, Baggelaar MP, de Vrij FMS and Deng H et al.. (2017) Activity-based protein profiling reveals off-target proteins of the FAAH inhibitor BIA 10-2474. Science 356: 1084-1087 [PMID:28596366]
  136. Wan M, Cravatt BF, Ring HZ, Zhang X and Francke U. (1998) Conserved chromosomal location and genomic structure of human and mouse fatty-acid amide hydrolase genes and evaluation of clasper as a candidate neurological mutation. Genomics 54: 408-14 [PMID:9878243]
  137. Wang L, Fan J, Thompson LF, Zhang Y, Shin T, Curiel TJ and Zhang B. (2011) CD73 has distinct roles in nonhematopoietic and hematopoietic cells to promote tumor growth in mice. J Clin Invest 121: 2371-82 [PMID:21537079]
  138. Watabiki T, Tsuji N, Kiso T, Ozawa T, Narazaki F and Kakimoto S. (2017) In vitro and in vivo pharmacological characterization of ASP8477: A novel highly selective fatty acid amide hydrolase inhibitor. Eur J Pharmacol 815: 42-48 [PMID:29017758]
  139. Wei BQ, Mikkelsen TS, McKinney MK, Lander ES and Cravatt BF. (2006) A second fatty acid amide hydrolase with variable distribution among placental mammals. J Biol Chem 281: 36569-78 [PMID:17015445]
  140. Wilensky RL and Macphee CH. (2009) Lipoprotein-associated phospholipase A(2) and atherosclerosis. Curr Opin Lipidol 20: 415-20 [PMID:19667981]
  141. Woolford AJ, Day PJ, Bénéton V, Berdini V, Coyle JE, Dudit Y, Grondin P, Huet P, Lee LY and Manas ES et al.. (2016) Fragment-Based Approach to the Development of an Orally Bioavailable Lactam Inhibitor of Lipoprotein-Associated Phospholipase A2 (Lp-PLA2). J Med Chem 59: 10738-10749 [PMID:27933945]
  142. Wyatt RM, Fraser I, Welty N, Lord B, Wennerholm M, Sutton S, Ameriks MK, Dugovic C, Yun S and White A et al.. (2020) Pharmacologic Characterization of JNJ-42226314, [1-(4-Fluorophenyl)indol-5-yl]-[3-[4-(thiazole-2-carbonyl)piperazin-1-yl]azetidin-1-yl]methanone, a Reversible, Selective, and Potent Monoacylglycerol Lipase Inhibitor. J Pharmacol Exp Ther 372: 339-353 [PMID:31818916]
  143. Yamada Y, Kato T, Ogino H, Ashina S and Kato K. (2008) Cetilistat (ATL-962), a Novel Pancreatic Lipase Inhibitor, Ameliorates Body Weight Gain and Improves Lipid Profiles in Rats Horm Metab Res 40: 539-543
  144. Yu QS, Holloway HW, Luo W, Lahiri DK, Brossi A and Greig NH. (2010) Long-acting anticholinesterases for myasthenia gravis: synthesis and activities of quaternary phenylcarbamates of neostigmine, pyridostigmine and physostigmine. Bioorg Med Chem 18: 4687-93 [PMID:20627738]
  145. Yuzwa SA, Macauley MS, Heinonen JE, Shan X, Dennis RJ, He Y, Whitworth GE, Stubbs KA, McEachern EJ and Davies GJ et al.. (2008) A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nat Chem Biol 4: 483-90 [PMID:18587388]
  146. Zhi Z, Zhang W, Yao J, Shang Y, Hao Q, Liu Z, Ren Y, Li J, Zhang G and Wang J. (2020) Discovery of Aryl Formyl Piperidine Derivatives as Potent, Reversible, and Selective Monoacylglycerol Lipase Inhibitors. J Med Chem 63: 5783-5796 [PMID:32429662]