IUPHAR/BPS Guide to Pharmacology CITE
https://doi.org/10.2218/gtopdb/F117/2023.1

Taste 2 receptors in GtoPdb v.2023.1



Maik Behrens1
  1. Technical University of Munich, Germany


Abstract

Taste 2 receptors or Bitter taste receptors (TAS2Rs) are G protein-coupled receptors expressed in oral sensory cells and a variety of non-gustatory tissues. The ~25 human TAS2Rs share low amino acid sequence identities with other GPCR families and are classified as broadly tuned "generalist" receptors with numerous, chemically diverse bitter agonists, as narrowly tuned "specialist" receptors with very few activators, as intermediately tuned receptors with an average number of agonists, or receptors specialized to interact with chemically defined activators [32]. The number of functional bitter taste receptor genes varies among species and orthologues might not be functionally conserved. Due to their expression in various tissues, the signal transduction of TAS2Rs is complex. Some TAS2Rs interact with drugs such as analgesic, anti-inflammatory, and antibacterial compounds. The specialist database BitterDB contains additional information on bitter compounds and receptors [14].

Contents

This is a citation summary for Taste 2 receptors in the Guide to Pharmacology database (GtoPdb). It exists purely as an adjunct to the database to facilitate the recognition of citations to and from the database by citation analyzers. Readers will almost certainly want to visit the relevant sections of the database which are given here under database links.

GtoPdb is an expert-driven guide to pharmacological targets and the substances that act on them. GtoPdb is a reference work which is most usefully represented as an on-line database. As in any publication this work should be appropriately cited, and the papers it cites should also be recognized. This document provides a citation for the relevant parts of the database, and also provides a reference list for the research cited by those parts. For further details see [12].

Please note that the database version for the citations given in GtoPdb are to the most recent preceding version in which the family or its subfamilies and targets were substantially changed. The links below are to the current version. If you need to consult the cited version, rather than the most recent version, please contact the GtoPdb curators.

Database links

Taste 2 receptors
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=117
    Receptors
            TAS2R1
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=659
            TAS2R3
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=660
            TAS2R4
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=661
            TAS2R5
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=662
            TAS2R7
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=663
            TAS2R8
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=664
            TAS2R9
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=665
            TAS2R10
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=666
            TAS2R13
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=667
            TAS2R14
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=668
            TAS2R16
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=669
            TAS2R19
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=670
            TAS2R20
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=671
            TAS2R30
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=673
            TAS2R31
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=674
            TAS2R38
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=682
            TAS2R39
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=675
            TAS2R40
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=676
            TAS2R41
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=680
            TAS2R42
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=672
            TAS2R43
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=678
            TAS2R45
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2828
            TAS2R46
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=679
            TAS2R50
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=677
            TAS2R60
            https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=681

References

  1. Behrens M, Blank K and Meyerhof W. (2017) Blends of Non-caloric Sweeteners Saccharin and Cyclamate Show Reduced Off-Taste due to TAS2R Bitter Receptor Inhibition. Cell Chem Biol 24: 1199-1204.e2 [PMID:28919036]
  2. Behrens M, Brockhoff A, Batram C, Kuhn C, Appendino G and Meyerhof W. (2009) The human bitter taste receptor hTAS2R50 is activated by the two natural bitter terpenoids andrographolide and amarogentin. J Agric Food Chem 57: 9860-6 [PMID:19817411]
  3. Behrens M, Brockhoff A, Kuhn C, Bufe B, Winnig M and Meyerhof W. (2004) The human taste receptor hTAS2R14 responds to a variety of different bitter compounds. Biochem Biophys Res Commun 319: 479-85 [PMID:15178431]
  4. Behrens M, Gu M, Fan S, Huang C and Meyerhof W. (2018) Bitter substances from plants used in traditional Chinese medicine exert biased activation of human bitter taste receptors. Chem Biol Drug Des 91: 422-433 [PMID:28834122]
  5. Behrens M, Gunn HC, Ramos PC, Meyerhof W and Wooding SP. (2013) Genetic, functional, and phenotypic diversity in TAS2R38-mediated bitter taste perception. Chem Senses 38: 475-84 [PMID:23632915]
  6. Behrens M, Redel U, Blank K and Meyerhof W. (2019) The human bitter taste receptor TAS2R7 facilitates the detection of bitter salts. Biochem Biophys Res Commun 512: 877-881 [PMID:30928101]
  7. Born S, Levit A, Niv MY, Meyerhof W and Behrens M. (2013) The human bitter taste receptor TAS2R10 is tailored to accommodate numerous diverse ligands. J Neurosci 33: 201-13 [PMID:23283334]
  8. Brockhoff A, Behrens M, Massarotti A, Appendino G and Meyerhof W. (2007) Broad tuning of the human bitter taste receptor hTAS2R46 to various sesquiterpene lactones, clerodane and labdane diterpenoids, strychnine, and denatonium. J Agric Food Chem 55: 6236-43 [PMID:17595105]
  9. Brockhoff A, Behrens M, Roudnitzky N, Appendino G, Avonto C and Meyerhof W. (2011) Receptor agonism and antagonism of dietary bitter compounds. J Neurosci 31: 14775-82 [PMID:21994393]
  10. Bufe B, Breslin PA, Kuhn C, Reed DR, Tharp CD, Slack JP, Kim UK, Drayna D and Meyerhof W. (2005) The molecular basis of individual differences in phenylthiocarbamide and propylthiouracil bitterness perception. Curr Biol 15: 322-7 [PMID:15723792]
  11. Bufe B, Hofmann T, Krautwurst D, Raguse JD and Meyerhof W. (2002) The human TAS2R16 receptor mediates bitter taste in response to beta-glucopyranosides. Nat Genet 32: 397-401 [PMID:12379855]
  12. Buneman P, Christie G, Davies JA, Dimitrellou R, Harding SD, Pawson AJ, Sharman JL and Wu Y. (2020) Why data citation isn't working, and what to do about it Database 2020 [PMID:32367113]
  13. Cui M, Chen B, Xu K, Rigakou A, Diamantakos P, Melliou E, Logothetis DE and Magiatis P. (2021) Activation of specific bitter taste receptors by olive oil phenolics and secoiridoids. Sci Rep 11: 22340 [PMID:34785711]
  14. Dagan-Wiener A, Di Pizio A, Nissim I, Bahia MS, Dubovski N, Margulis E and Niv MY. (2019) BitterDB: taste ligands and receptors database in 2019. Nucleic Acids Res 47: D1179-D1185 [PMID:30357384]
  15. Di Pizio A, Waterloo LAW, Brox R, Löber S, Weikert D, Behrens M, Gmeiner P and Niv MY. (2020) Rational design of agonists for bitter taste receptor TAS2R14: from modeling to bench and back. Cell Mol Life Sci 77: 531-542 [PMID:31236627]
  16. Dotson CD, Zhang L, Xu H, Shin YK, Vigues S, Ott SH, Elson AE, Choi HJ, Shaw H and Egan JM et al.. (2008) Bitter taste receptors influence glucose homeostasis. PLoS One 3: e3974 [PMID:19092995]
  17. Fletcher JN, Kinghorn AD, Slack JP, McCluskey TS, Odley A and Jia Z. (2011) In vitro evaluation of flavonoids from Eriodictyon californicum for antagonist activity against the bitterness receptor hTAS2R31. J Agric Food Chem 59: 13117-21 [PMID:22059530]
  18. Fotsing JR, Darmohusodo V, Patron AP, Ching BW, Brady T, Arellano M, Chen Q, Davis TJ, Liu H and Servant G et al.. (2020) Discovery and Development of S6821 and S7958 as Potent TAS2R8 Antagonists. J Med Chem 63: 4957-4977 [PMID:32330040]
  19. Greene TA, Alarcon S, Thomas A, Berdougo E, Doranz BJ, Breslin PA and Rucker JB. (2011) Probenecid inhibits the human bitter taste receptor TAS2R16 and suppresses bitter perception of salicin. PLoS One 6: e20123 [PMID:21629661]
  20. Hellfritsch C, Brockhoff A, Stähler F, Meyerhof W and Hofmann T. (2012) Human psychometric and taste receptor responses to steviol glycosides. J Agric Food Chem 60: 6782-93 [PMID:22616809]
  21. Intelmann D, Batram C, Kuhn C, Haseleu G, Meyerhof W and Hofmann T. (2009) Three TAS2R Bitter Taste Receptors Mediate the Psychophysical Responses to Bitter Compounds of Hops (Humulus lupulus L.) and Beer Chemosensory Perception 2: 118–132
  22. Jaggupilli A, Singh N, De Jesus VC, Gounni MS, Dhanaraj P and Chelikani P. (2019) Chemosensory bitter taste receptors (T2Rs) are activated by multiple antibiotics. FASEB J 33: 501-517 [PMID:30011231]
  23. Jaggupilli A, Singh N, Jesus VC, Duan K and Chelikani P. (2018) Characterization of the Binding Sites for Bacterial Acyl Homoserine Lactones (AHLs) on Human Bitter Taste Receptors (T2Rs). ACS Infect Dis 4: 1146-1156 [PMID:29799189]
  24. Kim UK, Jorgenson E, Coon H, Leppert M, Risch N and Drayna D. (2003) Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science 299: 1221-5 [PMID:12595690]
  25. Kohl S, Behrens M, Dunkel A, Hofmann T and Meyerhof W. (2013) Amino acids and peptides activate at least five members of the human bitter taste receptor family. J Agric Food Chem 61: 53-60 [PMID:23214402]
  26. Kuhn C, Bufe B, Winnig M, Hofmann T, Frank O, Behrens M, Lewtschenko T, Slack JP, Ward CD and Meyerhof W. (2004) Bitter taste receptors for saccharin and acesulfame K. J Neurosci 24: 10260-5 [PMID:15537898]
  27. Lang R, Lang T, Dunkel A, Ziegler F and Behrens M. (2022) Overlapping activation pattern of bitter taste receptors affect sensory adaptation and food perception. Front Nutr 9: 1082698 [PMID:36601079]
  28. Lang T, Frank O, Lang R, Hofmann T and Behrens M. (2022) Activation Spectra of Human Bitter Taste Receptors Stimulated with Cyclolinopeptides Corresponding to Fresh and Aged Linseed Oil. J Agric Food Chem 70: 4382-4390 [PMID:35364812]
  29. Lang T, Lang R, Di Pizio A, Mittermeier VK, Schlagbauer V, Hofmann T and Behrens M. (2020) Numerous Compounds Orchestrate Coffee's Bitterness. J Agric Food Chem 68: 6692-6700 [PMID:32437139]
  30. Levit A, Nowak S, Peters M, Wiener A, Meyerhof W, Behrens M and Niv MY. (2014) The bitter pill: clinical drugs that activate the human bitter taste receptor TAS2R14. FASEB J 28: 1181-97 [PMID:24285091]
  31. Mancuso G, Borgonovo G, Scaglioni L and Bassoli A. (2015) Phytochemicals from Ruta graveolens Activate TAS2R Bitter Taste Receptors and TRP Channels Involved in Gustation and Nociception. Molecules 20: 18907-22 [PMID:26501253]
  32. Meyerhof W, Batram C, Kuhn C, Brockhoff A, Chudoba E, Bufe B, Appendino G and Behrens M. (2010) The molecular receptive ranges of human TAS2R bitter taste receptors. Chem Senses 35: 157-70 [PMID:20022913]
  33. Morini G, Winnig M, Vennegeerts T, Borgonovo G and Bassoli A. (2021) Vanillin Activates Human Bitter Taste Receptors TAS2R14, TAS2R20, and TAS2R39. Front Nutr 8: 683627 [PMID:34307435]
  34. Narukawa M, Noga C, Ueno Y, Sato T, Misaka T and Watanabe T. (2011) Evaluation of the bitterness of green tea catechins by a cell-based assay with the human bitter taste receptor hTAS2R39. Biochem Biophys Res Commun 405: 620-5 [PMID:21272567]
  35. Nowak S, Di Pizio A, Levit A, Niv MY, Meyerhof W and Behrens M. (2018) Reengineering the ligand sensitivity of the broadly tuned human bitter taste receptor TAS2R14. Biochim Biophys Acta Gen Subj 1862: 2162-2173 [PMID:30009876]
  36. Pronin AN, Xu H, Tang H, Zhang L, Li Q and Li X. (2007) Specific alleles of bitter receptor genes influence human sensitivity to the bitterness of aloin and saccharin. Curr Biol 17: 1403-8 [PMID:17702579]
  37. Pydi SP, Jaggupilli A, Nelson KM, Abrams SR, Bhullar RP, Loewen MC and Chelikani P. (2015) Abscisic Acid Acts as a Blocker of the Bitter Taste G Protein-Coupled Receptor T2R4. Biochemistry 54: 2622-31 [PMID:25844797]
  38. Roland WS, Gouka RJ, Gruppen H, Driesse M, van Buren L, Smit G and Vincken JP. (2014) 6-methoxyflavanones as bitter taste receptor blockers for hTAS2R39. PLoS One 9: e94451 [PMID:24722342]
  39. Roland WS, van Buren L, Gruppen H, Driesse M, Gouka RJ, Smit G and Vincken JP. (2013) Bitter taste receptor activation by flavonoids and isoflavonoids: modeled structural requirements for activation of hTAS2R14 and hTAS2R39. J Agric Food Chem 61: 10454-66 [PMID:24117141]
  40. Roland WS, Vincken JP, Gouka RJ, van Buren L, Gruppen H and Smit G. (2011) Soy isoflavones and other isoflavonoids activate the human bitter taste receptors hTAS2R14 and hTAS2R39. J Agric Food Chem 59: 11764-71 [PMID:21942422]
  41. Roudnitzky N, Behrens M, Engel A, Kohl S, Thalmann S, Hübner S, Lossow K, Wooding SP and Meyerhof W. (2015) Receptor Polymorphism and Genomic Structure Interact to Shape Bitter Taste Perception. PLoS Genet 11: e1005530 [PMID:26406243]
  42. Sakurai T, Misaka T, Ueno Y, Ishiguro M, Matsuo S, Ishimaru Y, Asakura T and Abe K. (2010) The human bitter taste receptor, hTAS2R16, discriminates slight differences in the configuration of disaccharides. Biochem Biophys Res Commun 402: 595-601 [PMID:20965151]
  43. Slack JP, Brockhoff A, Batram C, Menzel S, Sonnabend C, Born S, Galindo MM, Kohl S, Thalmann S and Ostopovici-Halip L et al.. (2010) Modulation of bitter taste perception by a small molecule hTAS2R antagonist. Curr Biol 20: 1104-9 [PMID:20537538]
  44. Soares S, Kohl S, Thalmann S, Mateus N, Meyerhof W and De Freitas V. (2013) Different phenolic compounds activate distinct human bitter taste receptors. J Agric Food Chem 61: 1525-33 [PMID:23311874]
  45. Soares S, Silva MS, García-Estevez I, Groβmann P, Brás N, Brandão E, Mateus N, de Freitas V, Behrens M and Meyerhof W. (2018) Human Bitter Taste Receptors Are Activated by Different Classes of Polyphenols. J Agric Food Chem 66: 8814-8823 [PMID:30056706]
  46. Suess B, Brockhoff A, Meyerhof W and Hofmann T. (2018) The Odorant ( R)-Citronellal Attenuates Caffeine Bitterness by Inhibiting the Bitter Receptors TAS2R43 and TAS2R46. J Agric Food Chem 66: 2301-2311 [PMID:27569025]
  47. Thalmann S, Behrens M and Meyerhof W. (2013) Major haplotypes of the human bitter taste receptor TAS2R41 encode functional receptors for chloramphenicol. Biochem Biophys Res Commun 435: 267-73 [PMID:23632330]
  48. Thomas A, Sulli C, Davidson E, Berdougo E, Phillips M, Puffer BA, Paes C, Doranz BJ and Rucker JB. (2017) The Bitter Taste Receptor TAS2R16 Achieves High Specificity and Accommodates Diverse Glycoside Ligands by using a Two-faced Binding Pocket. Sci Rep 7: 7753 [PMID:28798468]
  49. Upadhyaya J, Pydi SP, Singh N, Aluko RE and Chelikani P. (2010) Bitter taste receptor T2R1 is activated by dipeptides and tripeptides. Biochem Biophys Res Commun 398: 331-5 [PMID:20599705]
  50. Wang Y, Zajac AL, Lei W, Christensen CM, Margolskee RF, Bouysset C, Golebiowski J, Zhao H, Fiorucci S and Jiang P. (2019) Metal Ions Activate the Human Taste Receptor TAS2R7. Chem Senses 44: 339-347 [PMID:31066447]
  51. Wooding S, Gunn H, Ramos P, Thalmann S, Xing C and Meyerhof W. (2010) Genetics and bitter taste responses to goitrin, a plant toxin found in vegetables. Chem Senses 35: 685-92 [PMID:20551074]
  52. Yamazaki T, Sagisaka M, Ikeda R, Nakamura T, Matsuda N, Ishii T, Nakayama T and Watanabe T. (2014) The human bitter taste receptor hTAS2R39 is the primary receptor for the bitterness of theaflavins. Biosci Biotechnol Biochem 78: 1753-6 [PMID:25273142]