Voltage-gated sodium channels (Na\textsubscript{V}) in GtoPdb v.2023.1

William A. Catterall1, Alan L. Goldin2 and Stephen G. Waxman3

1. University of Washington, USA
2. University of California, USA
3. Yale University, USA

Abstract

Sodium channels are voltage-gated sodium-selective ion channels present in the membrane of most excitable cells. Sodium channels comprise of one pore-forming \(\alpha \) subunit, which may be associated with either one or two \(\beta \) subunits [179]. \(\alpha \)-Subunits consist of four homologous domains (I-IV), each containing six transmembrane segments (S1-S6) and a pore-forming loop. The positively charged fourth transmembrane segment (S4) acts as a voltage sensor and is involved in channel gating. The crystal structure of the bacterial NavAb channel has revealed a number of novel structural features compared to earlier potassium channel structures including a short selectivity filter with ion selectivity determined by interactions with glutamate side chains [278]. Interestingly, the pore region is penetrated by fatty acyl chains that extend into the central cavity which may allow the entry of small, hydrophobic pore-blocking drugs [278]. Auxiliary \(\beta 1, \beta 2, \beta 3 \) and \(\beta 4 \) subunits consist of a large extracellular N-terminal domain, a single transmembrane segment and a shorter cytoplasmic domain.

The nomenclature for sodium channels was proposed by Goldin et al., (2000) [146] and approved by the NC-IUPHAR Subcommittee on sodium channels (Catterall et al., 2005, [53]).

Contents

This is a citation summary for Voltage-gated sodium channels (Na\textsubscript{V}) in the Guide to Pharmacology database (GtoPdb). It exists purely as an adjunct to the database to facilitate the recognition of citations to and from the database by citation analyzers. Readers will almost certainly want to visit the relevant sections of the database which are given here under database links.

GtoPdb is an expert-driven guide to pharmacological targets and the substances that act on them. GtoPdb is a reference work which is most usefully represented as an on-line database. As in any publication this work should be appropriately cited, and the papers it cites should also be recognized. This document provides a citation for the relevant parts of the database, and also provides a reference list for the research cited by those parts. For further details see [41].

Please note that the database version for the citations given in GtoPdb are to the most recent preceding version in which the family or its subfamilies and targets were substantially changed. The links below are to the current version. If you need to consult the cited version, rather than the most recent version, please contact the GtoPdb curators.

Database links

Voltage-gated sodium channels (Na\textsubscript{V})
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=82
Introduction to Voltage-gated sodium channels (Na\(_V\))

https://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=82

Channels and Subunits

- Na\(_V\)1.1
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=578
- Na\(_V\)1.2
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=579
- Na\(_V\)1.3
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=580
- Na\(_V\)1.4
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=581
- Na\(_V\)1.5
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=582
- Na\(_V\)1.6
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=583
- Na\(_V\)1.7
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=584
- Na\(_V\)1.8
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=585
- Na\(_V\)1.9
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=586

References

Upregulation of a silent sodium channel after peripheral, but not central, nerve injury in DRG neurons. *J Neurophysiol* **82**: 2776-85 [PMID:10561444]

myocytes. *Circulation* **103**: 1303-10 [PMID:11238277]

mutations in S6 segments associated with myotonia: S804F and V1293I. *J Physiol (Lond.)* **510 (Pt 3)**: 685-94 [PMID:9660885]

229. Makita N, Behr E, Shimizu W, Horie M, Sunami A, Crotti L, Schulze-Bahr E, Fukuahara S, Mochizuki N,

263. Nuss HB, Tomaselli GF and Marbán E. (1995) Cardiac sodium channels (hH1) are intrinsically more sensitive to block by lidocaine than are skeletal muscle (mu 1) channels. J Gen Physiol 106: 1193-209 [PMID:8786356]

305. metabolite 4,9-anhydro-TTX is a highly specific blocker of the Na(v1.6) voltage-dependent sodium channel.

Ropivacaine Effects on Human Cardiac SCN5A Channels. *Anesth Analg* **120**: 1226-34 [PMID:25692452]

366. Toledo-Aral JJ, Moss BL, He ZJ, Koszowski AG, Whisenand T, Levinson SR, Wolf JF, Silos-Santiago I,

399. Waxman SG, Kocsis JD and Black JA. (1994) Type III sodium channel mRNA is expressed in embryonic but not adult spinal sensory neurons, and is reexpressed following axotomy. J Neurophysiol 72: 466-70 [PMID:7965028]

410. Wright SN. (2002) Comparison of aconitine-modified human heart (hH1) and rat skeletal (mu1) muscle Na+ channels: an important role for external Na+ ions. J Physiol (Lond.) 338: 759-71 [PMID:11826163]

