Cyclic nucleotide-regulated channels (CNG) in GtoPdb v.2023.1

Elvir Becirovic¹, Martin Biel², Stefanie Fenske², Verena Hammelmann², Franz Hofmann³ and U. Benjamin Kaupp⁴

1. University Hospital Zürich, Switzerland
2. Ludwig-Maximilians-Universität, Germany
3. Technische Universität München, Germany
4. Forschungszentrum Jülich, Germany

Abstract

Cyclic nucleotide-gated (CNG) channels are responsible for signalling in the primary sensory cells of the vertebrate visual and olfactory systems. CNG channels are voltage-independent cation channels formed as tetramers. Each subunit has 6TM, with the pore-forming domain between TM5 and TM6. CNG channels were first found in rod photoreceptors [83, 120], where light signals through rhodopsin and transducin to stimulate phosphodiesterase and reduce intracellular cyclic GMP level. This results in a closure of CNG channels and a reduced ‘dark current’. Similar channels were found in the cilia of olfactory neurons [181] and the pineal gland [71]. The cyclic nucleotides bind to a domain in the C terminus of the subunit protein: other channels directly binding cyclic nucleotides include hyperpolarisation-activated, cyclic nucleotide-gated channels (HCN), ether-a-go-go and certain plant potassium channels.

The HCN channels are cation channels that are activated by hyperpolarisation at voltages negative to ~50 mV. The cyclic nucleotides cyclic AMP and cyclic GMP directly bind to the cyclic nucleotide-binding domain of HCN channels and shift their activation curves to more positive voltages, thereby enhancing channel activity. HCN channels underlie pacemaker currents found in many excitable cells including cardiac cells and neurons [65, 192]. In native cells, these currents have a variety of names, such as I_h, I_q and I_f. The four known HCN channels have six transmembrane domains and form tetramers. It is believed that the channels can form heteromers with each other, as has been shown for HCN1 and HCN4 [2]. High resolution structural studies of CNG and HCN channels has provided insight into the the gating processes of these channels [139, 146, 140]. A standardised nomenclature for CNG and HCN channels has been proposed by the NC-IUPHAR Subcommittee on voltage-gated ion channels [108].

Contents

This is a citation summary for Cyclic nucleotide-regulated channels (CNG) in the Guide to Pharmacology database (GtoPdb). It exists purely as an adjunct to the database to facilitate the recognition of citations to and from the database by citation analyzers. Readers will almost certainly want to visit the relevant sections of the database which are given here under database links.

GtoPdb is an expert-driven guide to pharmacological targets and the substances that act on them. GtoPdb is a reference work which is most usefully represented as an on-line database. As in any publication this work should be appropriately cited, and the papers it cites should also be recognized. This document provides a citation for the relevant parts of the database, and also provides a reference list for the research cited by those parts. For further details see [42].

Please note that the database version for the citations given in GtoPdb are to the most recent preceding
version in which the family or its subfamilies and targets were substantially changed. The links below are to the current version. If you need to consult the cited version, rather than the most recent version, please contact the GtO pdb curators.

Database links

Cyclic nucleotide-regulated channels (CNG)
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=71

Introduction to Cyclic nucleotide-regulated channels (CNG)
https://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=71

Channels and Subunits
- **CNGA1**
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=394
- **CNGA2**
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=395
- **CNGA3**
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=396
- **CNGA4**
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=397
- **CNGB1**
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=398
- **CNGB3**
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=399
- **HCN1**
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=400
- **HCN2**
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=401
- **HCN3**
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=402
- **HCN4**
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=403

References

51. Chen TY, Illing M, Molday LL, Hsu YT, Yau KW and Molday RS. (1994) Subunit 2 (or beta) of retinal rod cGMP-gated cation channel is a component of the 240-kDa channel-associated protein and mediates
cGMP-gated cation channel is a component of the 240-kDa channel-associated protein and mediates
Ca(2+)-calmodulin modulation. *Proc Natl Acad Sci USA* **91**: 11757-61 [PMID:7526403]

pacemaker channel HCN1 with filamin A. J Biol Chem 279: 43847-53 [PMID:15292205]
115. Jenkins PM, Zhang L, Thomas G and Martens JR. (2009) PACS-1 mediates phosphorylation-dependent

147. Liman ER and Buck LB. (1994) A second subunit of the olfactory cyclic nucleotide-gated channel confers high sensitivity to cAMP. Neuron 13: 611-21 [PMID:7522482]

Role of subunit heteromerization and N-linked glycosylation in the formation of functional neuronal tissues.

gated channels. Neuron 42: 401-10 [PMID:15134637]

214. Santoro B, Grant SG, Bartsch D and Kandel ER. (1997) Interactive cloning with the SH3 domain of N-src identifies a new brain specific ion channel protein, with homology to eag and cyclic nucleotide-gated channels. Proc Natl Acad Sci USA 94: 14815-20 [PMID:9405696]

216. Santoro B, Lee JY, Englot DJ, Gildersleeve S, Piskorowski RA, Siegelbaum SA, Winawer MR and...

Selvakumar D, Drescher MJ and Drescher DG. (2013) Cyclic nucleotide-gated channel α-3 (CNGA3) interacts with stereocilia tip-link cadherin 23 + exon 68 or alternatively with myosin VIIa, two proteins required for hair cell mechanotransduction. *J Biol Chem* **288**: 7215-29 [PMID:23329832]

256. Wei JY, Cohen ED and Barnstable CJ. (1997) Direct blockade of both cloned rat rod photoreceptor cyclic

nucleotide-gated non-selective cation (CNG) channel alpha-subunit and native CNG channels from Xenopus rod outer segments by H-8, a non-specific cyclic nucleotide-dependent protein kinase inhibitor. *Neurosci Lett* **233**: 37-40 [PMID:9324234]

275. Zagotta WN, Olivier NB, Black KD, Young EC, Olson R and Gouaux E. (2003) Structural basis for

