Tachykinin receptors in GtoPdb v.2023.1

Jeffrey Barrett¹, Brenden Canning², Joseph Coulson³, Erin Dombrowsky¹, Steven D. Douglas⁴, Tung M. Fong⁵, Christa Y. Heyward¹, Susan E. Leeman⁶ and Pranela Remeshwar⁷

1. Children’s Hospital of Philadelphia, USA
2. Johns Hopkins, USA
3. University of Edinburgh, UK
4. University of Pennsylvania, USA
5. Vyluma Inc, USA
6. Boston University, USA
7. University of Medicine and Dentistry of New Jersey, USA

Abstract

Tachykinin receptors (provisional nomenclature as recommended by NC-IUPHAR [91]) are activated by the endogenous peptides substance P (SP), neurokinin A (NKA; previously known as substance K, neurokinin α, neuromedin L), neurokinin B (NKB; previously known as neurokinin β, neuromedin K), neuropeptide K and neuropeptide γ (N-terminally extended forms of neurokinin A). The neurokinins (A and B) are mammalian members of the tachykinin family, which includes peptides of mammalian and nonmammalian origin containing the consensus sequence: Phe-x-Gly-Leu-Met. Marked species differences in in vitro pharmacology exist for all three receptors, in the context of nonpeptide ligands. Antagonists such as aprepitant and fosaprepitant were approved by FDA and EMA, in combination with other antiemetic agents, for the prevention of nausea and vomiting associated with emetogenic cancer chemotherapy.

Contents

This is a citation summary for Tachykinin receptors in the Guide to Pharmacology database (GtoPdb). It exists purely as an adjunct to the database to facilitate the recognition of citations to and from the database by citation analyzers. Readers will almost certainly want to visit the relevant sections of the database which are given here under database links.

GtoPdb is an expert-driven guide to pharmacological targets and the substances that act on them. GtoPdb is a reference work which is most usefully represented as an on-line database. As in any publication this work should be appropriately cited, and the papers it cites should also be recognized. This document provides a citation for the relevant parts of the database, and also provides a reference list for the research cited by those parts. For further details see [29].

Please note that the database version for the citations given in GtoPdb are to the most recent preceding version in which the family or its subfamilies and targets were substantially changed. The links below are to the current version. If you need to consult the cited version, rather than the most recent version, please contact the GtoPdb curators.

Database links

Tachykinin receptors
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=62
Introduction to Tachykinin receptors
https://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=62

Receptors
- NK₁ receptor
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=360
- NK₂ receptor
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=361
- NK₃ receptor
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=362

References

tachykinins substance P and hemokinin-1 favor the generation of human memory Th17 cells by inducing IL-1β, IL-23, and TNF-like 1A expression by monocytes. *J Immunol* **186**: 4175-82 [PMID:21368235]

following activation of midbrain dopamine pathways by receptor selective neurokinin agonists.

Neuropeptides **19**: 119-26 [PMID:1719444]

80. Engel MA, Becker C, Reeh PW and Neurath MF. (2011) Role of sensory neurons in colitis: increasing evidence for a neuroimmune link in the gut. *Inflamm Bowel Dis* **17**: 1030-3 [PMID:20722067]

93. Fristad I, Vandezevska-Radunovic V, Fjeld K, Wimalawansa SJ and Hals Kvinnsland I. (2003) NK1, NK2, NK3 and CGRP1 receptors identified in rat oral soft tissues, and in bone and dental hard tissue cells. *Cell"

115. Guard S, Watson SP, Maggio JE, Too HP and Watling KJ. (1990) Pharmacological analysis of [3H]-senktide binding to NK3 tachykinin receptors in guinea-pig ileum longitudinal muscle-mu

152. Krause JE, Staveteig PT, Mentzer JN, Schmidt SK, Tucker JB, Brodbeck RM, Bu JY and Karpitskiy VV.

173. Marchetti C and Nistri A. (2001) Neuronal bursting induced by NK3 receptor activation in the neonatal

231. Rumsey WL, Aharony D, Bialecki RA, Abbott BM, Barthlow HG, Caccese R, Ghanekar S, Lengel D,

prevention of post-ERCP pancreatitis in high risk patients: a phase II randomized, double-blind placebo controlled trial. **JOP** **13**: 514-8 [PMID:22964958]

250. Sheldrick RL, Ball DI and Coleman RA. (1990) Characterisation of the neurokinin receptors mediating contraction of isolated tracheal preparations from a variety of species. **Agents Actions Suppl** **31**: 205-9 [PMID:1706905]

