Neuropeptide FF/neuropeptide AF receptors in GtoPdb v.2023.1

Catherine Mollereau-Manaute¹, Lionel Moulédous², Michel Roumy¹, Kazuyoshi Tsutsui³, Takayoshi Ubuka⁴ and Jean-Marie Zajac¹

1. CNRS Toulouse, France
2. Université Paul Sabatier, France
3. Waseda University, Japan
4. Monash University Malaysia, Malaysia

Abstract

The Neuropeptide FF receptor family contains two subtypes, NPFF1 and NPFF2 (provisional nomenclature [12]), which exhibit high affinities for neuropeptide FF (NPFF, O15130) and RFamide related peptides (RFRP: precursor gene symbol NPVF, Q9HCQ7). NPFF1 is broadly distributed in the central nervous system with the highest levels found in the limbic system and the hypothalamus. NPFF2 is present in high density in the superficial layers of the mammalian spinal cord where it is involved in nociception and modulation of opioid functions.

Contents

This is a citation summary for Neuropeptide FF/neuropeptide AF receptors in the Guide to Pharmacology database (GtoPdb). It exists purely as an adjunct to the database to facilitate the recognition of citations to and from the database by citation analyzers. Readers will almost certainly want to visit the relevant sections of the database which are given here under database links.

GtoPdb is an expert-driven guide to pharmacological targets and the substances that act on them. GtoPdb is a reference work which is most usefully represented as an on-line database. As in any publication this work should be appropriately cited, and the papers it cites should also be recognized. This document provides a citation for the relevant parts of the database, and also provides a reference list for the research cited by those parts. For further details see [4].

Please note that the database version for the citations given in GtoPdb are to the most recent preceding version in which the family or its subfamilies and targets were substantially changed. The links below are to the current version. If you need to consult the cited version, rather than the most recent version, please contact the GtoPdb curators.

Database links

Neuropeptide FF/neuropeptide AF receptors
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=43
Introduction to Neuropeptide FF/neuropeptide AF receptors
https://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=43
Receptors
NPFF1 receptor
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=300
NPFF2 receptor
References

autoradiographic distribution of NPFF1 neuropeptide FF receptor in the rat brain and comparison with NPFF2 receptor by using [125I]YVP and [125I]EYF as selective radioligands. *Neuroscience* **115**: 349-61

 analgesia of a selective NPFT2 agonist depends on opioid activity. Biochem Biophys Res Commun 336:
 197-203 [PMID:16129413]
 luteinizing hormone and follicle-stimulating hormone synthesis and secretion in ovine pituitary
 gonadotropes. Endocrinology 150: 5549-56 [PMID:19808777]
59. Simonin F, Schmitt M, Laulín JP, Laboureyras E, Jhamandas JH, MacTavish D, Matías A, Mollereau C,
 Laurent P and Parmentier M et al. (2006) RF9, a potent and selective neuropeptide FF receptor
 antagonist, prevents opioid-induced tolerance associated with hyperalgesia. Proc Natl Acad Sci USA
 103: 466-71 [PMID:16407169]
60. Smith JT, Young IR, Veldhuis JD and Clarke IJ. (2012) Gonadotropin-inhibitory hormone (GnIH)
 secretion into the ovine hypophyseal portal system. Endocrinology 153: 3368-75 [PMID:22549225]
 inhibits GnRH-induced gonadotropin subunit gene transcriptions by inhibiting AC/cAMP/PKA-
 Molecular basis for the activation of gonadotropin-inhibitory hormone gene transcription by
63. Sunter D, Hewson AK, Lynam S and Dickson SL. (2001) Intracerebroventricular injection of
 neuropeptide FF, an opioid modulating neuropeptide, acutely reduces food intake and stimulates water
64. Takeuchi T, Fujita A, Roumy M, Zajac JM and Hata F. (2001) Effect of 1DMe, a neuropeptide FF analog,
 on acetylcholine release from myenteric plexus of guinea pig ileum. Jpn J Pharmacol 86: 417-22
 [PMID:11569615]
 tritiated radioligands for labelling Neuropeptide FF (NPFF(1) and NPFF(2)) receptors. Neurochem Int
 55: 815-9 [PMID:19682524]
 inhibitory hormone (GnIH) and its control of central and peripheral reproductive function. Front
 Neuroendocrinol 31: 284-95 [PMID:20211640]
 expression, and physiological functions of Siberian hamster gonadotropin-inhibitory hormone.
 Endocrinology 153: 373-85 [PMID:22045661]
68. Ubuka T, Lai H, Kitani M, Suzuuchi A, Pham V, Cadigan PA, Wang A, Chowdhury VS, Tsutsui K and
 Bentley GE. (2009) Gonadotropin-inhibitory hormone identification, cDNA cloning, and distribution in
 GE. (2009) Identification of human GnIH homologs, RFRP-1 and RFRP-3, and the cognate receptor,
 peptide identified by immunoaffinity chromatography and mass spectrometry. FEBS Lett 512: 255-8
 [PMID:11852091]
 inhibits basal forebrain vGlut2-gonadotropin-releasing hormone neurons via a direct postsynaptic
 mechanism. J Physiol (Lond.) 367: 1401-11 [PMID:19204051]
73. Yang HY, Fratta W, Majane EA and Costa E. (1985) Isolation, sequencing, synthesis, and
 pharmacological characterization of two brain neuropeptides that modulate the action of morphine.
 Proc Natl Acad Sci USA 82: 7757-61 [PMID:3865193]
74. Yang HY and Iadarola MJ. (2006) Modulatory roles of the NPFF system in pain mechanisms at the spinal
 level. Peptides 27: 943-52 [PMID:16443306]
 endogenous RFamide-related peptide-3 and its interaction with receptors. Biochim Biophys Acta 1593: