Class A Orphans in GtoPdb v.2023.1

Stephen P.H. Alexander¹, Jim Battey², Helen E. Benson³, Richard V. Benya⁴, Tom I. Bonner⁵, Anthony P. Davenport⁶, Khurujiam Dhanachandra Singh⁷, Satoru Eguchi⁸, Anthony Harmar³, Nick Holliday¹, Robert T. Jensen², Sadashiva Karnik⁷, Evi Kostenis⁹, Wen Chiy Liew³, Amy E. Monaghan³, Chido Mpamhanga¹⁰, Richard Neubig¹¹, Adam J Pawson¹², Jean-Philippe Pin¹³, Joanna L. Sharman³, Michael Spedding¹⁴, Eliot Spindel¹⁵, Leigh Stoddart¹⁶, Laura Storjohann¹⁷, Walter G. Thomas¹⁸, Kalyan Tirupula⁷ and Patrick Vanderheyden¹⁹

1. University of Nottingham, UK
2. National Institutes of Health, USA
3. University of Edinburgh, UK
4. University of Illinois at Chicago, USA
5. National Institute of Mental Health, USA
6. University of Cambridge, UK
7. Cleveland Clinic Lerner Research Institute, USA
8. Temple University, USA
9. University of Bonn, Germany
10. LifeArc, UK
11. Michigan State University, USA
12. The University of Edinburgh, UK
13. Université de Montpellier, France
14. Spedding Research Solutions SARL, France
15. Oregon Health & Science University, USA
16. University of Glasgow, UK
17. University of Utah, USA
18. University of Queensland, Australia
19. Vrije Universiteit Brussel, Belgium

Abstract

Table 1 lists a number of putative GPCRs identified by NC-IUPHAR [161], for which preliminary evidence for an endogenous ligand has been published, or for which there exists a potential link to a disease, or disorder. These GPCRs have recently been reviewed in detail [121]. The GPCRs in Table 1 are all Class A, rhodopsin-like GPCRs. Class A orphan GPCRs not listed in Table 1 are putative GPCRs with as-yet unidentified endogenous ligands.

Table 1: Class A orphan GPCRs with putative endogenous ligands

<table>
<thead>
<tr>
<th>GPR3</th>
<th>GPR4</th>
<th>GPR6</th>
<th>GPR12</th>
<th>GPR15</th>
<th>GPR17</th>
<th>GPR20</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPR22</td>
<td>GPR26</td>
<td>GPR31</td>
<td>GPR34</td>
<td>GPR35</td>
<td>GPR37</td>
<td>GPR39</td>
</tr>
<tr>
<td>GPR50</td>
<td>GPR63</td>
<td>GPR65</td>
<td>GPR68</td>
<td>GPR75</td>
<td>GPR84</td>
<td>GPR87</td>
</tr>
<tr>
<td>GPR88</td>
<td>GPR132</td>
<td>GPR149</td>
<td>GPR161</td>
<td>GPR183</td>
<td>LGR4</td>
<td>LGR5</td>
</tr>
<tr>
<td>LGR6</td>
<td>MAS1</td>
<td>MRGPRD</td>
<td>MRGPRX1</td>
<td>MRGPRX2</td>
<td>P2RY10</td>
<td>TAAR2</td>
</tr>
</tbody>
</table>
In addition the orphan receptors \textit{GPR18}, \textit{GPR55} and \textit{GPR119} which are reported to respond to endogenous agents analogous to the endogenous cannabinoid ligands have been grouped together (\textit{GPR18}, \textit{GPR55} and \textit{GPR119}).

\textbf{Contents}

This is a citation summary for Class A Orphans in the \textit{Guide to Pharmacology} database (GtoPdb). It exists purely as an adjunct to the database to facilitate the recognition of citations to and from the database by citation analyzers. Readers will almost certainly want to visit the relevant sections of the database which are given here under database links.

\textit{GtoPdb} is an expert-driven guide to pharmacological targets and the substances that act on them. \textit{GtoPdb} is a reference work which is most usefully represented as an on-line database. As in any publication this work should be appropriately cited, and the papers it cites should also be recognized. This document provides a citation for the relevant parts of the database, and also provides a reference list for the research cited by those parts. For further details see [68].

Please note that the database version for the citations given in \textit{GtoPdb} are to the most recent preceding version in which the family or its subfamilies and targets were substantially changed. The links below are to the current version. If you need to consult the cited version, rather than the most recent version, please contact the \textit{GtoPdb} curators.

\textbf{Database links}

\textbf{Class A Orphans}
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=16

\textbf{Introduction to Class A Orphans}
https://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=16

\textbf{Receptors}
\textit{GPR3}
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=83
\textit{GPR4}
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=84
\textit{GPR6}
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=85
\textit{GPR42}
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=228
\textit{GPR12}
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=86
\textit{GPR15}
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=87
\textit{GPR17}
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=88
\textit{GPR19}
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=90
\textit{GPR20}
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=91
\textit{GPR21}
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=92
\textit{GPR22}
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=93
\textit{GPR25}
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=95
\textit{GPR26}
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=96
\textit{GPR27}
References

GPR15, and CXCR6 are major coreceptors of human immunodeficiency virus type 2 variants isolated from blood. **Endocrinol** 8573-8578.

Blaak H, Boers PH, Gruters RA, Schuitmaker H, van der Ende ME and Osterhaus AD. (2005) CCR5, GPR15, and CXCR6 are major coreceptors of human immunodeficiency virus type 2 variants isolated from blood. **Endocrinol** 8573-8578.

Cebra-Thomas JA, Tsai JY, Pilder SH, Copeland NG, Jenkins NA and Silver LM. (1992) Localization of the
Mas proto-oncogene to a densely marked region of mouse chromosome 17 associated with genomic imprinting. Genomics 13: 444-6 [PMID:1612602]

that control core body temperature and fever response Signaling as asymmetry and an extension of J Comput Aided Mol Des identification of new ligands for GPR17: a promising therapeutic target for neurodegenerative diseases. [PMID:18234974]

Eberwine J and Bartfai T. (2011) Single cell transcriptomics of hypothalamic warm sensitive neurons that control core body temperature and fever response Signaling asymmetry and an extension of

Eberwine J and Bartfai T. (2011) Single cell transcriptomics of hypothalamic warm sensitive neurons that control core body temperature and fever response Signaling asymmetry and an extension of
chemical neuroanatomy. Pharmacol Ther 129: 241-59 [PMID:20970451]

197. Gomes I, Bobeck EN, Margolis EB, Gupta A, Sierra S, Fakira AK, Fujita W, Müller TD, Müller A and

201. Gubitz AK and Reppert SM. (1999) Assignment of the melatonin-related receptor to human chromosome X (GPR50) and mouse chromosome X (Gpr50). Genomics 35: 248-51 [PMID:9933574]

A genome-wide association study identifies an osteoarthritis susceptibility locus on chromosome 7q22.

325. Kotyan LC, Collier AR, Cao KH, Niese KA, Hedgebeth M, Radu CG, Witte ON, Khurana Hershey GK,

368. Liaw CW and Connolly DT. (2009) Sequence polymorphisms provide a common consensus sequence for GPR41 and GPR42. *DNA Cell Biol* **28**: 555-60 [PMID:19630535]

385. Lobo MK, Cui Y, Ostlund SB, Balleine BW and Yang XW. (2007) Genetic control of instrumental

Diabetes **33**: 570-6 [PMID:14988239]

virus type 1 env genes derived from brain and blood of patients with AIDS. *J Virol* **77**: 12336-45 [PMID:14581570]

606. Saxena H, Deshpande DA, Tiegcs BC, Yan H, Battafarano RJ, Burrows WM, Damera G, Panettieri RA,

Biochem regulates gpr3, gpr6, and gpr12 expression in human umbilical vein endothelial cells. [PMID:12220620]

Tseng PY and Hoon MA. (2022) GPR15L is an epithelial inflammation-derived pruritogen. Sci Adv 8: eabm7342 [PMID:35704588]

