Cannabinoid receptors in GtoPdb v.2023.1

Mary Abood¹, Stephen P.H. Alexander², Francis Barth³, Tom I. Bonner⁴, Heather Bradshaw⁵, Guy Cabral⁶, Pierre Casellas⁷, Ben F. Cravatt⁸, William A. Devane⁹, Vincenzo Di Marzo¹⁰, Maurice R. Elphick¹¹, Christian C. Felder¹², Peter Greasley¹², Miles Herkenham⁴, Allyn C. Howlett¹³, George Kunos¹⁴, Ken Mackie¹⁵, Raphael Mechoulam¹⁶, Roger P. Pertwee¹⁷ and Ruth A. Ross¹⁸

1. Temple University, USA
2. University of Nottingham, UK
3. Sanofi Synthelabo Recherche, France
4. National Institute of Mental Health, USA
5. Indiana University, USA
6. Medical College of Virginia, USA
7. Université de Montpellier, France
8. Scripps Research Institute, USA
9. CNR Institute of Biomolecular Chemistry, Italy
10. Queen Mary University of London, UK
11. Lilly Research Laboratories, USA
12. AstraZeneca R&D Mölndal, Sweden
13. North Carolina Central University, USA
14. National Institutes of Health, USA
15. University of Washington, USA
16. Hebrew University, Israel
17. University of Aberdeen, UK
18. University of Toronto, Canada

Abstract

Cannabinoid receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Cannabinoid Receptors [119]) are activated by endogenous ligands that include N-arachidonoylethanolamine (anandamide), N-homo-γ-linolenoylethanolamine, N-docosatetra-7,10,13,16-enoylethanolamine and 2-arachidonoylglycerol. Potency determinations of endogenous agonists at these receptors are complicated by the possibility of differential susceptibility of endogenous ligands to enzymatic conversion [5].

There are currently three licenced cannabinoid medicines each of which contains a compound that can activate CB₁ and CB₂ receptors [111]. Two of these medicines were developed to suppress nausea and vomiting produced by chemotherapy. These are nabilone (Cesamet®), a synthetic CB₁/CB₂ receptor agonist, and synthetic Δ⁹-tetrahydrocannabinol (Marinol®; dronabinol), which can also be used as an appetite stimulant. The third medicine, Sativex®, contains mainly Δ⁹-tetrahydrocannabinol and cannabidiol, both extracted from cannabis, and is used to treat multiple sclerosis and cancer pain.

Contents

This is a citation summary for Cannabinoid receptors in the Guide to Pharmacology database (GtoPdb). It exists purely as an adjunct to the database to facilitate the recognition of citations to and from the database by citation analyzers. Readers will almost certainly want to visit the relevant sections of the database which
are given here under database links.

GtoPdb is an expert-driven guide to pharmacological targets and the substances that act on them. GtoPdb is a reference work which is most usefully represented as an on-line database. As in any publication this work should be appropriately cited, and the papers it cites should also be recognized. This document provides a citation for the relevant parts of the database, and also provides a reference list for the research cited by those parts. For further details see [22].

Please note that the database version for the citations given in GtoPdb are to the most recent preceding version in which the family or its subfamilies and targets were substantially changed. The links below are to the current version. If you need to consult the cited version, rather than the most recent version, please contact the GtoPdb curators.

Database links

Cannabinoid receptors

https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=13

Introduction to Cannabinoid receptors

https://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=13

Receptors

- **CB₁ receptor**
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=56

- **CB₂ receptor**
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=57

References

155. Song ZH and Bonner TI. (1996) A lysine residue of the cannabinoid receptor is critical for receptor recognition by several agonists but not WIN55212-2. *Mol Pharmacol* **49**: 891-6 [PMID:8622639]

