Metabotropic glutamate receptors in GtoPdb v.2021.3

Francine Acher1, Giuseppe Battaglia2, Hans Bräuner-Osborne3, P. Jeffrey Conn4, Robert Duvoisin5, Francesco Ferraguti6, Peter J. Flor7, Cyril Goudet8, Karen J. Gregory9, David Hampson10, Michael P. Johnson11, Yoshihiro Kubo12, James Monn13, Shigetada Nakanishi14, Ferdinando Nicoletti15, Colleen Niswender4, Jean-Philippe Pin8, Philippe Rondard8, Darryle D. Schoepp11, Ryuichi Shigemoto16 and Michihiro Tateyama12

1. Université René Descarte, France
2. IRCCS NEUROMED, Italy
3. University of Copenhagen, Denmark
4. Vanderbilt University, USA
5. Oregon Health & Science University, USA
6. Innsbruck University, Austria
7. Novartis Institutes for Biomedical Research, Switzerland
8. Université de Montpellier, France
9. Monash University, Australia
10. University of Toronto, Canada
11. Lilly Research Laboratories, USA
12. National Institute for Physiological Sciences, Japan
13. Eli Lilly and Company, USA
14. Kyoto University Faculty of Medicine, Japan
15. University of Rome 'La Sapienza', Italy
16. Institute of Science and Technology, Austria

Abstract

Metabotropic glutamate (mGlu) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Metabotropic Glutamate Receptors [347]) are a family of G protein-coupled receptors activated by the neurotransmitter glutamate [138]. The mGlu family is composed of eight members (named mGlu1 to mGlu8) which are divided in three groups based on similarities of agonist pharmacology, primary sequence and G protein coupling to effector: Group-I (mGlu1 and mGlu5), Group-II (mGlu2 and mGlu3) and Group-III (mGlu4, mGlu6, mGlu7 and mGlu8) (see Further reading).

Structurally, mGlu are composed of three juxtaposed domains: a core G protein-activating seven-transmembrane domain (TM), common to all GPCRs, is linked via a rigid cysteine-rich domain (CRD) to the Venus Flytrap domain (VFTD), a large bi-lobed extracellular domain where glutamate binds. mGlu form constitutive dimers, cross-linked by a disulfide bridge. The structures of the VFTD of mGlu1, mGlu2, mGlu3, mGlu5 and mGlu7 have been solved [198, 271, 264, 399]. The structure of the 7 transmembrane (TM) domains of both mGlu1 and mGlu5 have been solved, and confirm a general helical organization similar to that of other GPCRs, although the helices appear more compacted [87, 429, 61]. Recent advances in cryo-electron microscopy have provided structures of full-length mGlu receptor dimers [189]. Studies have revealed the possible formation of heterodimers between either group-I receptors, or within and between group-II and -III receptors [88]. First well characterized in transfected cells, co-localization and specific pharmacological properties also suggest the existence of such heterodimers in the brain [266],[436, 143, 279]. Beyond heteromerization with other mGlu receptor subtypes, increasing evidence suggests mGlu receptors form heteromers and larger order complexes with class A GPCRs (reviewed in [138]).

The endogenous ligands of mGlu are L-glutamic acid, L-serine-O-phosphate, N-acetylaspartylglutamate (NAAG) and L-cysteine sulphinic acid. Group-I mGlu receptors may be activated by 3,5-DHPG and (S)-3HPG [30] and antagonized by (S)-hexylhomoibotenic acid [232]. Group-II mGlu receptors may be activated by LY389795 [265], LY379268 [265], eglumegad [350, 430], DCG-IV and (2R,3R)-APDC [351], and antagonised by eGlu [168] and LY307452 [421, 103]. Group-III mGlu receptors may be activated by L-AP4 and (R,S)-4-PPG [128]. An example of an
antagonist selective for mGlu receptors is LY341495, which blocks mGlu2 and mGlu3 at low nanomolar concentrations, mGlu8 at high nanomolar concentrations, and mGlu4, mGlu5, and mGlu7 in the micromolar range [183]. In addition to orthosteric ligands that directly interact with the glutamate recognition site, allosteric modulators that bind within the TM domain have been described. Negative allosteric modulators are listed separately. The positive allosteric modulators most often act as ‘potentiators’ of an orthosteric agonist response, without significantly activating the receptor in the absence of agonist.

Contents

This is a citation summary for Metabotropic glutamate receptors in the Guide to Pharmacology database (GtoPdb). It exists purely as an adjunct to the database to facilitate the recognition of citations to and from the database by citation analyzers. Readers will almost certainly want to visit the relevant sections of the database which are given here under database links.

GtoPdb is an expert-driven guide to pharmacological targets and the substances that act on them. GtoPdb is a reference work which is most usefully represented as an on-line database. As in any publication this work should be appropriately cited, and the papers it cites should also be recognized.

Please note that the database version for the citations given in GtoPdb are to the most recent preceding version in which the family or its subfamilies and targets were substantially changed. The links below are to the current version. If you need to consult the cited version, rather than the most recent version, please contact the GtoPdb curators.

Database links

Metabotropic glutamate receptors
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=40
Introduction to Metabotropic glutamate receptors
https://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=40
Receptors
mGlu1 receptor
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=289
mGlu2 receptor
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=290
mGlu3 receptor
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=291
mGlu4 receptor
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=292
mGlu5 receptor
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=293
mGlu6 receptor
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=294
mGlu7 receptor
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=295
mGlu8 receptor
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=296

References

Beqollari D and Kammermeier PJ. (2008) The mGlu(4) receptor allosteric modulator N-(2-ethyl-1,3-thiazol-4-yl)ethyl)pyridine binding to metabotropic glutamate receptor subtype 5 in rodent brain: in vitro and in vivo characterization.

Baude A, Nusser Z, Roberts JD, Mulvihill E, Mclhinney RA and Somogyi P. (1993) The metabotropic glutamate receptor (mGluR1 alpha) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction.

Akazawa C, Ohishi H, Nakajima Y, Okamoto N, Shigemoto R, Nakanishi S and Mizuno N. (1994) Expression of mRNAs of L-AP4-sensitive metabotropic glutamate receptors (mGlu4, mGlu6, mGluR7) in the rat retina.

Amato RJ, Felts AS, Rodriguez AL, Venable DF, Morrison RD, Byers FW, Daniels JS, Niswender CM, Conn PJ and Lindsay CW et al. (2013) Substituted 1-Phenyl-3-(pyridin-2-yl)urea negative allosteric modulators of mGlu5: discovery of a new tool compound VU0463841 with activity in rat models of cocaine addiction.

Aramori I and Nakanishi S. (1992) Signal transduction and pharmacological characteristics of a metabotropic glutamate receptor, mGluR1, in transfected CHO cells.

44. Bäckström P and Hyttiä P. (2005) Suppression of alcohol self-administration and cue-induced reinstatement of alcohol seeking by the mGlu2/3 receptor agonist LY379268 and the mGlu8 receptor agonist (S)-3,4-DCPG. *Eur J Pharmacol* 528: 110-8 [PMID:16324694]

allostERIC MODULATORS IN RODENT MODELS OF DEPRESSION. J Neurogenet 25: 152-66 [PMID:22091727]

60. Chopra M, Yao Y, Blake TJ, Hampson DR and Johnson EC. (2009) The neuroactive peptide N-acetylaspartylglutamate is not an agonist at the metabotropic glutamate receptor subtype 3 of metabotropic glutamate receptor. J Pharmacol Exp Ther 330: 212-9 [PMID:19389924]

63. Chung DS, Winder DG and Conn PJ. (1994) 4-Bromohomoibotenic acid selectively activates a 1-aminocyclopentane-1S,3R-dicarboxylic acid-insensitive metabotropic glutamate receptor coupled to phosphoinositide hydrolysis in rat cortical slices. J Neurochem 63: 133-9 [PMID:8207423]

allosteric modulator of the metabotropic glutamate 2 receptor. J Med Chem 55: 8770-89

[PMID:23072213]

profiling suggests a link between behavioral and central nervous system neurochemical changes. *J Pharmacol Exp Ther* **336**: 165-77 [PMID:20947638]

regioisomeric aryl naphthyridines as potent mGlu5 receptor antagonists. *Bioorg Med Chem Lett* **17**: 6525-8 [PMID:17936624]

146. Han G and Hampson DR. (1999) Ligand binding to the amino-terminal domain of the mGluR4 subtype of metabotropic glutamate receptor. J Biol Chem 274: 10008-13 [PMID:10187777]

170. Johnson BG, Wright RA, Arnold MB, Wheeler WJ, Ornstein PL and Schoepp DD. (1999) [3H]-LY341495 as a novel antagonist radioligand for group II metabotropic glutamate (mGlu) receptors: characterization of binding to membranes of mGlu receptor subtype expressing cells. *Neuropharmacology* **38**: 1519-29

179. Kew JN, Pfimlin MC, Kemp JA and Mutel V. (2002) Differential regulation of synaptic transmission by mGlu2 and mGlu3 at the perforant path inputs to the dentate gyrus and CA1 revealed in mGlu2 -/- mice. *Neuropharmacology* **43**: 215-21

cation channel by metabotropic glutamate receptor mGluR1. *Nature* **426**: 285-91 [PMID:14614461]

215. Li ML, Yang SS, Xing B, Ferguson BR, Guichina Y, Li YC, Li F, Hu XQ and Gao WJ. (2015) LY395756, an mGluR2 agonist and mGluR3 antagonist, enhances NMDA receptor expression and function in the normal adult rat prefrontal cortex, but fails to improve working memory and reverse MK801-induced working memory impairment. *Exp Neurol* **273**: 190-201 [PMID:26341392]

218. Linden AM, Bergeron M, Baez M and Schoepp DD. (2003) Systemic administration of the potent mGlu8 receptor agonist (S)-3,4-DCPG induces c-Fos in stress-related brain regions in wild-type, but not mGlu8 receptor knockout mice. *Neuropharmacology* **45**: 473-83 [PMID:12907308]

the group II metabotropic glutamate receptor. *Mol Pharmacol* **60**: 944-54 [PMID:11641422]

243. Mannaioni G, Attucci S, Missanelli A, Pellicciari R, Corradetti R and Moroni F. (1999) Biochemical and electrophysiological studies on (S)-(+)-2-(3'-carboxybicyclo(1.1.1)pentyl)-glycine (CBPG), a novel mGlu5 receptor agonist endowed with mGlu1 receptor antagonist activity. *Neuropharmacology* **38**: 917-26 [PMID:10428410]

332. Rook JM, Xiang Z, Lv X, Ghoshal A, Dickerson JW, Bridges TM, Johnson KA, Foster DJ, Gregory
351.

350.

349.

348.

347.

345.

342.

341.

340.

339.

338.

337.

336.

335.

334.

333.

stimulation of phosphoinositide hydrolysis in the rat hippocampus by 3,5-

335.

336.

337.

338.

339.

340.

341.

342.

343.

344.

Schmid S and Fendt M. (2006) Effects of the mGluR8 agonist (S)-3,4-DCPG in the lateral amygdala on acquisition/expression of fear-potentiated startle, synaptic transmission, and plasticity. *Neuropsychopharmacology* **30**: 154-64 [PMID:16188284]

345.

346.

347.

348.

349.

Schoepp DD, Salhoff CR, Wright RA, Johnson BG, Burnett JP, Mayne NG, Belagaje R, Wu S and Monn JA. (1996) The novel metabotropic glutamate receptor agonist 2R,4R-APDC potentiates stimulation of phosphoinositide hydrolysis in the rat hippocampus by 3,5-
dihydroxyphenylglycine: evidence for a synergistic interaction between group 1 and group 2 receptors. *Neuropharmacology* **35**: 1661-72 [PMID:9076745]

381. Tallaksen-Greene SJ, Kaatza KW, Romano C and Albin RL. (1998) Localization of mGluR1a-like immunoreactivity and mGluR5-like immunoreactivity in identified populations of striatal neurons. Brain Res 780: 210-7 [PMID:9507137]

389. Thomas NK, Wright RA, Howson PA, Kingston AE, Schoepp D and Jane DE. (2001) (S)-3,4-DCPG, a potent and selective mGlu8a receptor agonist, activates metabotropic glutamate receptors on primary afferent terminals in the neonatal rat spinal cord. Neuropharmacology 40: 311-8 [PMID:11166323]

390. Thomsen C, Kristensen M, Mulvihill E, Haldeman B and Suzdak PD. (1992) L-2-amino-4-phosphonobutyrate (L-AP4) is an agonist at the type IV metabotropic glutamate receptor which is negatively coupled to adenylate cyclase. Eur J Pharmacol 227: 361-2 [PMID:1361913]

403. Uyama Y, Ishida M and Shinozaki H. (1997) DCG-IV, a potent metabotropic glutamate receptor agonist, as an NMDA receptor agonist in the rat cortical slice. *Brain Res** **752**: 327-30 [PMID:9106476]

407. van den Pol AN, Romano C and Ghosh P. (1995) Metabotropic glutamate receptor mGlur5a, in the taste hairs of taste buds in rat gustatory papillae. *Brain Res** **65**: 91-6 [PMID:8576426]

Neuropharmacology **40**: 10-9 [PMID:11077066]

432. Yamaguchi S and Nakamichi S. (1998) Regional expression and regulation of alternative forms of
mRNAs derived from two distinct transcription initiation sites of the rat mGluR5 gene. J Neurochem 71: 60-8 [PMID:9648851]

