Regulators of G protein Signaling (RGS) proteins in GtoPdb v.2021.2

Katelin E. Ahlers-Dannen¹, Mohammed Alqinyah², Christopher Bodle¹, Josephine Bou Dagher², Bandana Chakravarti¹, Shreoshi P. Choudhuri³, Kirk M. Druey⁴, Rory A. Fisher¹, Kyle J. Gerber⁵, John R. Hepler⁵, Shelley B. Hooks², Havish S. Kantheti³, Behirda Karaj⁶, Somayeh Layeghi-Ghalehsoukhteh⁷, Jae-Kyung Lee², Zili Luo¹, Kirill Martemyanov⁸, Luke D. Mascarenhas³, Harrison J. McNabb⁹, Carolina Montañez-Miranda¹⁰, Osita W. Ogujiofor⁵, Hoa Phan Thi Nhu⁶, David L. Roman¹, Vincent Shaw⁶, Benita Sjögren⁹, Mackenzie M. Spencer¹, Katherine E. Squires⁵, Laurie Sutton⁸, Menbere Wendimu², Thomas M. Wilkie³, Keqiang Xie⁸, Qian Zhang⁹ and Yalda Zolghadri⁷

1. University of Iowa, USA
2. University of Georgia, USA
3. University of Texas Southwestern Medical Center, USA
4. National Institutes of Health, USA
5. Emory University, USA
6. Michigan State University, USA
7. Shiraz University, Iran
8. Scripps Research Institute, USA
9. Purdue University, USA
10. Emory University School of Medicine, USA

Abstract

Regulator of G protein Signaling, or RGS, proteins serve an important regulatory role in signaling mediated by G protein-coupled receptors (GPCRs). They all share a common RGS domain that directly interacts with active, GTP-bound Gα subunits of heterotrimeric G proteins. RGS proteins stabilize the transition state for GTP hydrolysis on Gα and thus induce a conformational change in the Gα subunit that accelerates GTP hydrolysis, thereby effectively turning off signaling cascades mediated by GPCRs. This GTPase accelerating protein (GAP) activity is the canonical mechanism of action for RGS proteins, although many also possess additional functions and domains. RGS proteins are divided into four families, R4, R7, R12 and RZ based on sequence homology, domain structure as well as specificity towards Gα subunits. For reviews on RGS proteins and their potential as therapeutic targets, see e.g. [225, 529, 578, 583, 584, 742, 753, 444, 10].

Contents

This is a citation summary for Regulators of G protein Signaling (RGS) proteins in the Guide to Pharmacology database (GtoPdb). It exists purely as an adjunct to the database to facilitate the recognition of citations to and from the database by citation analyzers. Readers will almost certainly want to visit the relevant sections of the database which are given here under database links.

GtoPdb is an expert-driven guide to pharmacological targets and the substances that act on them. GtoPdb is a reference work which is most usefully represented as an on-line database. As in any publication this work should be appropriately cited, and the papers it cites should also be recognized. This document provides a citation for the relevant parts of the database, and also provides a reference list for the research cited by those parts. For further details see [65].

Please note that the database version for the citations given in GtoPdb are to the most recent preceding version in which the family or its subfamilies and targets were substantially changed. The links below are to the current version. If you need to consult the cited version, rather than the most recent version, please contact the GtoPdb curators.

Database links
Regulators of G protein Signaling (RGS) proteins
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=891

RZ family
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=892

Targets
- RGS17(regulator of G-protein signaling 17)
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2801
- RGS19(regulator of G-protein signaling 19)
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2802
- RGS20(regulator of G-protein signaling 20)
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2803

R4 family
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=893

Targets
- RGS1(regulator of G-protein signaling 1)
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2804
- RGS2(regulator of G-protein signaling 2)
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2808
- RGS3(regulator of G-protein signaling 3)
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2810
- RGS4(regulator of G-protein signaling 4)
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2811
- RGS5(regulator of G-protein signaling 5)
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward? objectId=2812
- RGS8(regulator of G-protein signaling 8)
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2813
- RGS13(regulator of G-protein signaling 13)
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2805
- RGS16(regulator of G-protein signaling 16)
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2806
- RGS18(regulator of G-protein signaling 18)
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2807
- RGS21(regulator of G-protein signaling 21)
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2809

R7 family
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=894

Targets
- RGS6(regulator of G-protein signaling 6)
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward? objectId=2815
- RGS7(regulator of G-protein signaling 7)
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2816
- RGS9(regulator of G-protein signaling 9)
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2817
- RGS11(regulator of G-protein signaling 11)
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2814

R12 family
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=895

Targets
- RGS10(regulator of G-protein signaling 10)
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2818
- RGS12(regulator of G-protein signaling 12)
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2819
- RGS14(regulator of G-protein signaling 14)
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2820

References
human chromosome 1q43. *PLoS ONE* 8: e58399 [PMID:23555580]
7. Allen Brain Atlas, RGS14

33. BellBrook Labs. RGScreenTM.Service.

EMBL-EBI Expression Atlas. RGS14 regulator of G-protein signaling 14

Evans PR, Gerber KJ, Dammer EB, Duong DM, Goswami D, Lustberg DJ, Zou J, Yang JJ, Dudek SM and Griffin PR *et al.*. (2018) Interactome Analysis Reveals Regulator of G Protein Signaling 14 (RGS14) is a Novel Calcium/Calmodulin (Ca²⁺/CaM) and CaM Kinase II (CaMKII) Binding Partner. *J Proteome Res* **17**: 1700-1711 [PMID:29518331]

Friedman PA, Mamonova T, Magyar CE, Squires KE, Sneddon WB, Emlet DR and Hepler JR. (2019) Genetic variants disrupt human RGS14 binding to NHERF1 and regulation of NPT2A-
mediated phosphate transport \textit{bioRxiv}

Physiology of Area CA2. *J Proteome Res* **18**: 2571-2584 [PMID:31059263]

inhibition of alpha1A-adrenergic receptor signaling by RGS2 association with the receptor third intracellular loop. *J Biol Chem* **280**: 27289-95 [PMID:15917235]

244. Hu Y, Shmygelska A, Tran D, Eriksson N, Tung JY and Hinds DA. (2016) GWAS of 89,283...

266. Ip AK, Tso PH, Lee MM and Wong YH. (2012) Elevated expression of RGS19 impairs the

375. Luck K, Kim DK, Lambourne L, Spirohn K, Begg BE, Bian W, Brignall R, Cafarelli T, Campos-

expression	patterns	of	108	schizophrenia-associated	loci	in	cortex.

Okonkwo UA, Chen L, Ma D, Haywood VA, Barakat M, Urao N and DiPietro LA. (2020)

486. Patil DN, Rangarajan ES, Novick SJ, Pascal BD, Kojetin DJ, Griffin PR, Izard T and Martemyanov O.

phase after stroke. *FASEB J* **33**: 8990-8998 [PMID:31039042]

553. Schiff ML, Siderovski DP, Jordan JD, Brothers G, Snow B, De Vries L, Ortiz DF and Diversé-

636. Stuebe S, Wieland T, Kraemer E, Stritzky Av, Schroeder D, Seekamp S, Vogt A, Chen CK and

702.

701.

700.

699.

698.

697.

696.

695.

694.

693.

692.

691.

690.

689.

688.

687.

686.

685.

684.

683.

682.

Wu QW and Kapfhammer JP. (2020) Modulation of Increased mGluR1 Signaling by RGS8 Protects Purkinje Cells From Dendritic Reduction and Could Be a Common Mechanism in Diverse Forms of Spinocerebellar Ataxia. Front Cell Dev Biol 8: 569889 [PMID:33553137]

Selective loss of fine tuning of Gq/11 signaling by RGS2 protein exacerbates cardiomyocyte...

