GABA_B receptors in GtoPdb v.2021.2

Bernhard Bettler¹, Norman G. Bowery², John F. Cryan³, Sam J. Enna⁴, David H. Farb⁵, Wolfgang Foestl⁶, Klemens Kaumann⁶ and Jean-Philippe Pin⁷

1. University of Basel, Switzerland
2. GlaxoSmithKline, Italy
3. University College Cork, Ireland
4. University of Kansas Medical Center, USA
5. Boston University, USA
6. Novartis Institutes for Biomedical Research, Switzerland
7. Université de Montpellier, France

Abstract

Functional GABA_B receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on GABA_B receptors [11, 71]) are formed from the heterodimerization of two similar 7TM subunits termed GABA_{B1} and GABA_{B2} [11, 70, 28, 71, 87]. GABA_B receptors are widespread in the CNS and regulate both pre- and postsynaptic activity. The GABA_{B1} subunit, when expressed alone, binds both antagonists and agonists, but the affinity of the latter is generally 10-100-fold less than for the native receptor. Co-expression of GABA_{B1} and GABA_{B2} subunits allows transport of GABA_{B1} to the cell surface and generates a functional receptor that can couple to signal transduction pathways such as high-voltage-activated Ca²⁺ channels (Ca_v2.1, Ca_v2.2), or inwardly rectifying potassium channels (Kir3) [12, 11, 5]. The GABA_{B1} subunit harbours the GABA (orthosteric)-binding site within an extracellular domain (ECD) venus flytrap module (VTM), whereas the GABA_{B2} subunit mediates G protein-coupled signalling [11, 70, 40, 39]. The cryo-electron microscopy structures of the human full-length GABAB1-GABAB2 heterodimer have been solved in the inactive apo state, two intermediate agonist-bound forms and an active state in which the heterodimer is bound to an agonist and a positive allosteric modulator [81]. The positive allosteric modulator binds to the transmembrane dimerization interface and stabilizes the active state. Recent evidence indicates that higher order assemblies of GABA_B receptor comprising dimers of heterodimers occur in recombinant expression systems and in vivo and that such complexes exhibit negative functional cooperativity between heterodimers [69, 22]. Adding further complexity, KCTD (potassium channel tetramerization proteins) 8, 12, 12b and 16 associate as tetramers with the carboxy terminus of the GABA_{B2} subunit to impart altered signalling kinetics and agonist potency to the receptor complex [86, 3, 79] and are reviewed by [72]. The molecular complexity of GABA_B receptors is further increased through association with trafficking and effector proteins [80] and reviewed by [68]. The predominant GABA_{B1a} and GABA_{B1b} isoforms, which are most prevalent in neonatal and adult brain tissue respectively, differ in their ECD sequences as a result of the use of alternative transcription initiation sites. GABA_{B1a}-containing heterodimers localise to distal axons and mediate inhibition of glutamate release in the CA3-CA1 terminals, and GABA release onto the layer 5 pyramidal neurons, whereas GABA_{B1b}-containing receptors occur within dendritic spines and mediate slow postsynaptic inhibition [74, 91]. Amyloid precursor protein (APP) and soluble APP (sAPP) bind to the N-terminal sushi domain of the GABA_{B1a} isoform to regulate axonal trafficking of GABA_B receptors and release of neurotransmitters [76].

Contents

This is a citation summary for GABA_B receptors in the Guide to Pharmacology database (GtoPdb). It exists purely as an adjunct to the database to facilitate the recognition of citations to and from the database by citation analyzers. Readers will almost certainly want to visit the relevant sections of the database which are given here under database links.
GtoPdb is an expert-driven guide to pharmacological targets and the substances that act on them. GtoPdb is a reference work which is most usefully represented as an on-line database. As in any publication this work should be appropriately cited, and the papers it cites should also be recognized. This document provides a citation for the relevant parts of the database, and also provides a reference list for the research cited by those parts. For further details see [15].

Please note that the database version for the citations given in GtoPdb are to the most recent preceding version in which the family or its subfamilies and targets were substantially changed. The links below are to the current version. If you need to consult the cited version, rather than the most recent version, please contact the GtoPdb curators.

Database links

GABA_B receptors
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=26

Introduction to GABA_B receptors
https://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=26

Receptors

- **Complexes**
 - GABA_B receptor
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=242

Receptors and Subunits

- **GABA_{B₁}**
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=240

- **GABA_{B₂}**
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=241

Accessory Proteins

- **KCTD8**
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1917

- **KCTD12**
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1918

- **kctd12b**
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1919

- **KCTD16**
 https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1920

References

42. Clark JA, Mezey E, Lam AS and Bonner TI. (2000) Distribution of the GABA(B) receptor subunit gb2 in rat CNS. *Brain Res* **860**: 41-52 [PMID:10727622]

+ requirement for high-affinity gamma-aminobutyric acid (GABA) binding at GABA(B) receptors: involvement of serine 269 of the GABA(B)R1 subunit. *Mol

58. Margeta-Mitrovic M, Mitrovic I, Riley RC, Jan LY and Basbaum AI. (1999) Immunohistochemical...
localization of GABA(B) receptors in the rat central nervous system. *J Comp Neurol* **405**: 299-321 [PMID:10076927]

102. Sullivan R, Chateauneuf A, Coulombe N, Kolakowski Jr LF, Johnson MP, Hebert TE, Ether N, Belley M, Metters K and Abramovitz M et al. (2000) Coexpression of full-length gamma-aminobutyric acid(B) (GABA(B)) receptors with truncated receptors and metabotropic glutamate receptor 4 supports the GABAB heterodimer as the functional receptor. J Pharmacol Exp Ther 293: 460-7 [PMID:10773016]

