Acetylcholine receptors (muscarinic) in GtoPdb v.2021.2

Nigel J. M. Birdsall¹, Sophie Bradley², David A. Brown³, Noel J. Buckley⁴, R.A. John Challiss², Arthur Christopoulos⁵, Richard M. Eglen⁶, Frederick Ehler⁷, Christian C. Felder⁸, Rudolf Hammer⁹, Heinz J. Kilbinger¹⁰, Günter Lambrecht¹¹, Chris Langmead⁶, Fred Mitchelson¹², Ernst Mutschler¹¹, Neil M. Nathanson¹³, Roy D. Schwarz¹⁴, David Thal⁵, Andrew B. Tobin², Celine Valant⁵ and Jurgen Wess¹⁵

1. Francis Crick Institute, UK
2. University of Leicester, UK
3. University College London, UK
4. King's College London, UK
5. Monash University, Australia
6. PerkinElmer, UK
7. University of California Irvine, USA
8. Lilly Research Laboratories, USA
9. Nippon Boehringer Ingleheim, Japan
10. University of Mainz, Germany
11. University of Frankfurt, Germany
12. University of Melbourne, Australia
13. University of Washington, USA
14. Pfizer, USA
15. National Institutes of Health, USA

Abstract

Muscarinic acetylcholine receptors (mAChRs) (nomenclature as agreed by the NC-IUPHAR Subcommittee on Muscarinic Acetylcholine Receptors [50]) are activated by the endogenous agonist acetylcholine. All five (M₁-M₅) mAChRs are ubiquitously expressed in the human body and are therefore attractive targets for many disorders. Functionally, M₁, M₃, and M₅ mAChRs preferentially couple to G₉/₁₁ proteins, whilst M₂ and M₄ mAChRs predominantly couple to Gᵢₒ proteins. Both agonists and antagonists of mAChRs are clinically approved drugs, including pilocarpine for the treatment of elevated intra-ocular pressure and glaucoma, and atropine for the treatment of Bradycardia and poisoning by muscarinic agents such as organophosphates.

Contents

This is a citation summary for Acetylcholine receptors (muscarinic) in the Guide to Pharmacology database (GtoPdb). It exists purely as an adjunct to the database to facilitate the recognition of citations to and from the database by citation analyzers. Readers will almost certainly want to visit the relevant sections of the database which are given here under database links.

GtoPdb is an expert-driven guide to pharmacological targets and the substances that act on them. GtoPdb is a reference work which is most usefully represented as an online database. As in any publication this work should be appropriately cited, and the papers it cites should also be recognized. This document provides a citation for the relevant parts of the database, and also provides a reference list for the research cited by those parts. For further details see [39].

Please note that the database version for the citations given in GtoPdb are to the most recent preceding version in which the family or its subfamilies and targets were substantially changed. The links below are to the current version. If you need to consult the cited version, rather than the most recent version, please contact the GtoPdb curators.

Database links

Acetylcholine receptors (muscarinic)
References

9. Auerbach SS and DrugMatrix® and ToxFX® Coordinator National Toxicology Program. National Toxicology Program: Dept of Health and Human Services.

53: 1120-30 [PMID:9614217]

85. Ehler FJ and Rathbun BE. (1990) Signaling through the muscarinic receptor-adenylate cyclase system of the heart is buffered against GTP over a range of concentrations. *Mol Pharmacol* **38**: 148-58 [PMID:2370853]

104. Gentry PR, Kobuka M, Bridges TM, Cho HP, Smith E, Chase P, Hodder PS, Utey TJ, Rajapakse A and Byers F et al. (2014) Discovery, synthesis and characterization of a highly muscarinic acetylcholine receptor (mACHR)-selective M5-orthosteric antagonist, VU0488130 (ML381): a

are not altered in mood disorders.

Jeon WJ, Gibbons AS and Dean B. (2013) The use of a modified [3H]4-DAMP radioligand binding assay with increased selectivity for muscarinic M3 receptor shows that cortical CHRM3 levels are not altered in mood disorders. Prog Neuropsychopharmacol Biol Psychiatry 47: 7-12

Kashihara K, Varga EV, Waite SL, Roeseke WR and Yamamura HI. (1992) Cloning of the rat M3, M4 and M5 muscarinic acetylcholine receptor genes by the polymerase chain reaction (PCR) and the pharmacological characterization of the expressed genes. Life Sci 51: 955-71 [PMID:1325587]

Impaired allosteric modulator of muscarinic receptors: hybrids of the antagonist AF-DX 384 and the hexamethonium derivative W84.

214. MRC. M1 muscarinic receptor agonist.

Galp(o)- and Galp(i)-coupled muscarinic m2 receptors in Xenopus oocytes: the role of receptor precoupling in RGS modulation. *J Physiol (Lond.)* **545**: 355-73 [PMID:12456817]

