Coronavirus (CoV) proteins (version 2020.4) in the IUPHAR/BPS Guide to Pharmacology Database

Stephen P.H. Alexander¹, Jonathan K. Ball¹ and Theocharis Tsoleridis¹

¹ University of Nottingham, UK

Abstract

Coronaviruses are large, often spherical, enveloped, single-stranded positive-sense RNA viruses, ranging in size from 80-220 nm. They can cause diseases ranging from the common cold to severe acute respiratory syndrome (SARS).

Contents

This is a citation summary for Coronavirus (CoV) proteins in the Guide to Pharmacology database (GtoPdb). It exists purely as an adjunct to the database to facilitate the recognition of citations to and from the database by citation analyzers. Readers will almost certainly want to visit the relevant sections of the database which are given here under database links.

GtoPdb is an expert-driven guide to pharmacological targets and the substances that act on them. GtoPdb is a reference work which is most usefully represented as an on-line database. As in any publication this work should be appropriately cited, and the papers it cites should also be recognized. This document provides a citation for the relevant parts of the database, and also provides a reference list for the research cited by those parts.

Please note that the database version for the citations given in GtoPdb are to the most recent preceding version in which the family or its subfamilies and targets were substantially changed. The links below are to the current version. If you need to consult the cited version, rather than the most recent version, please contact the GtoPdb curators.

Database links

Coronavirus (CoV) proteins
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=1034
Introduction to Coronavirus (CoV) proteins
http://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=1034

Targets

CoV Envelope protein
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3116
CoV 3C-like (main) protease
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3111
CoV Membrane glycoprotein
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3117
CoV Non-structural protein 6
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3118
CoV Non-structural protein 7b
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3123
CoV Non-structural protein 8
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3120
CoV Nucleoprotein
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3121
CoV Papain-like protease
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3132
CoV Protein 3a
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3115
CoV Protein 7a
References

Characterization and Covalent Inhibition of the Deubiquitinase and delSGylase Activity of SARS-CoV-2 Papain-Like Protease. *ACS Infect Dis* [PMID:32428392]

45. Miknis ZJ, Donaldson EF, Umland TC, Rimmer RA, Baric RS and Schultz LW. (2009) Severe acute respiratory syndrome coronavirus nsp9 dimerization is essential for efficient viral growth. *J. Virol.* **83**: 3007-

56. PostEra AI. MPero Activity Data

Res. 40: 1737-47 [PMID:22039154]

78. Weglarz-Tomczak E, Tomczak JM, Talma M and Brul S. (2020) Ebseilen as a highly active inhibitor of PLproR2 bioRxiv

82. Yang KS, Ma XR, Ma Y, Alougubelli YR, Scott DA, Vatansever EC, Drelich AK, Sankaran B, Geng ZZ and Blankenship LR et al. (2020) A Speedy Route to Multiple Highly Potent SARS-CoV-2 Main Protease Inhibitors. bioRxiv [PMID:32766582]

85. Yoshimoto FK. (2020) The Proteins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2 or n-CoV19), the Cause of COVID-19 The Protein Journal volume 39: 198–216

