Prostanoid receptors (version 2020.4) in the IUPHAR/BPS Guide to Pharmacology Database

Richard M. Breyer¹, Lucie Clapp², Robert A. Coleman³, Mark Giembycz⁴, Akos Heinemann⁵, Rebecca Hills⁶, Robert L. Jones⁷, Shuh Narumiya⁸, Xavier Nore⁹, Roy Pettipher¹⁰, Yukihiko Sugimoto¹¹, Mohib Uddin¹², David F. Woodward¹³ and Chengcan Yao⁶

1. Vanderbilt University, USA
2. University College London, UK
3. Pharmagene Laboratories, UK
4. University of Calgary, Canada
5. Otto Loewi Research Center (for Vascular Biology, Immunology and Inflammation), Austria
6. University of Edinburgh, UK
7. University of Strathclyde, UK
8. Kyoto University Faculty of Medicine, Japan
9. Laboratory for Vascular Translational Science, France
10. Atopix Therapeutics Ltd, UK
11. Kumamoto University, Japan
12. AstraZeneca, Sweden
13. Allergan plc, USA

Abstract

Prostanoid receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Prostanoid Receptors [661]) are activated by the endogenous ligands prostaglandins PGD₂, PGE₁, PGE₂, PGF₂α, PGH₂, prostacyclin [PGI₂] and thromboxane A₂. Differences and similarities between human and rodent prostanoid receptor orthologues, and their specific roles in pathophysiologic conditions are reviewed in [423]. Measurement of the potency of PGI₂ and thromboxane A₂ is hampered by their instability in physiological salt solution; they are often replaced by cicaprost and U46619, respectively, in receptor characterization studies.

Contents

This is a citation summary for Prostanoid receptors in the Guide to Pharmacology database (GtoPdb). It exists purely as an adjunct to the database to facilitate the recognition of citations to and from the database by citation analyzers. Readers will almost certainly want to visit the relevant sections of the database which are given here under database links.

GtoPdb is an expert-driven guide to pharmacological targets and the substances that act on them. GtoPdb is a reference work which is most usefully represented as an on-line database. As in any publication this work should be appropriately cited, and the papers it cites should also be recognized. This document provides a citation for the relevant parts of the database, and also provides a reference list for the research cited by those parts.

Please note that the database version for the citations given in GtoPdb are to the most recent preceding version in which the family or its subfamilies and targets were substantially changed. The links below are to the current version. If you need to consult the cited version, rather than the most recent version, please contact the GtoPdb curators.

Database links

Prostanoid receptors
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=58
Introduction to Prostanoid receptors
http://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=58
Receptors
DP₁ receptor
References

[PMID:19239477]

66. Bondesa BA, Jones KA, Glasgow WC and Pavlath GK. (2007) Inhibition of myoblast migration by
prostacyclin is associated with enhanced cell fusion. FASEB J. 21: 3338-45 [PMID:17488951]

preliminary observations. J Perinatol 30: 33-7 [PMID:19710676]

210

209

208

207

206

205

204

203

202

201

200

199

198

197

196

195

194

193

192

191

190

Cardiovasc Drug Rev 24: 1-10 [PMID:16939629]

236. Jones RL, Qian YM, Chan KM and Yim AP. (1998) Characterization of a prostanooid EP3-receptor in...

312. Li X and Tai HH. (2013) Activation of thromboxane A2 receptor (TP) increases the expression of monocyte chemoattractant protein -1 (MCP-1)/chemokine (C-C motif) ligand 2 (CCL2) and recruits macrophages to promote invasion of lung cancer cells. *PLoS ONE* 8: e54073 [PMID:23349788]

oxazepine-10-carboxylic) hydrazine (SC-19220). *Arch Int Pharmacodyn Ther* **180**: 46-56 [PMID:4982414]

West JD, Voss BM, Pavliv L, de Caestecker M, Hemnes AR and Carrier EJ. (2016) Antagonism of the thromboxane-prostanoid receptor is cardioprotective against right ventricular pressure overload. Pulm Circ 6: 211-23 [PMID:27252848]

noradrenaline levels in urethane-anaesthetized rats by activation of central prostanoid EP3 receptors.
