Phosphatidylinositol kinases (version 2020.2) in the IUPHAR/BPS Guide to Pharmacology Database

Mohib Uddin

1. AstraZeneca, Sweden

Abstract

Phosphatidylinositol may be phosphorylated at either 3- or 4- positions on the inositol ring by PI 3-kinases or PI 4-kinases, respectively.

Phosphatidylinositol 3-kinases

Phosphatidylinositol 3-kinases (PI3K, provisional nomenclature) catalyse the introduction of a phosphate into the 3-position of phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP) or phosphatidylinositol 4,5-bisphosphate (PIP₂). There is evidence that PI3K can also phosphorylate serine/threonine residues on proteins. In addition to the classes described below, further serine/threonine protein kinases, including ATM (Q13315) and mTOR (P42345), have been described to phosphorylate phosphatidylinositol and have been termed PI3K-related kinases. Structurally, PI3Ks have common motifs of at least one C2, calcium-binding domain and helical domains, alongside structurally-conserved catalytic domains. wortmannin and LY 294002 are widely-used inhibitors of PI3K activities. wortmannin is irreversible and shows modest selectivity between Class I and Class II PI3K, while LY294002 is reversible and selective for Class I compared to Class II PI3K.

Class I PI3Ks (EC 2.7.1.153) phosphorylate phosphatidylinositol 4,5-bisphosphate to generate phosphatidylinositol 3,4,5-trisphosphate and are heterodimeric, matching catalytic and regulatory subunits. Class IA PI3Ks include p110α, p110β and p110δ catalytic subunits, with predominantly p85 and p55 regulatory subunits. The single catalytic subunit that forms Class IB PI3K is p110γ. Class IA PI3Ks are more associated with receptor tyrosine kinase pathways, while the Class IB PI3K is linked more with GPCR signalling.

Class II PI3Ks (EC 2.7.1.154) phosphorylate phosphatidylinositol to generate phosphatidylinositol 3-phosphate (and possibly phosphatidylinositol 4-phosphate to generate phosphatidylinositol 3,4-bisphosphate). Three monomeric members exist, PI3K-C2α, β and β, and include Ras-binding, Phox homology and two C2domains.

The only class III PI3K isofrom (EC 2.7.1.137) is a heterodimer formed of a catalytic subunit (VPS34) and regulatory subunit (VPS15).

Phosphatidylinositol 4-kinases

Phosphatidylinositol 4-kinases (EC 2.7.1.67) generate phosphatidylinositol 4-phosphate and may be divided into higher molecular weight type III and lower molecular weight type II forms.

Contents

This is a citation summary for Phosphatidylinositol kinases in the Guide to Pharmacology database (GtoPdb). It exists purely as an adjunct to the database to facilitate the recognition of citations to and from the database by citation analyzers. Readers will almost certainly want to visit the relevant sections of the database which are given here under database links.

GtoPdb is an expert-driven guide to pharmacological targets and the substances that act on them. GtoPdb is a reference work which is most usefully represented as an on-line database. As in any publication this work should be appropriately cited, and the papers it cites should also be recognized. This document provides a citation for the relevant parts of the database, and also provides a reference list for the research cited by those parts.
Please note that the database version for the citations given in GtoPdb are to the most recent preceding version in which the family or its subfamilies and targets were substantially changed. The links below are to the current version. If you need to consult the cited version, rather than the most recent version, please contact the GtoPdb curators.

Database links

Phosphatidylinositol kinases
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=781

Enzymes

<table>
<thead>
<tr>
<th>Enzyme Name</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI4KIIIα/PIK4CA</td>
<td>http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2148</td>
</tr>
<tr>
<td>PI3Ka</td>
<td>http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2153</td>
</tr>
<tr>
<td>PI4KIIIβ/PIK4CB</td>
<td>http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2149</td>
</tr>
<tr>
<td>PI3Kβ</td>
<td>http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2154</td>
</tr>
<tr>
<td>PI4KIIα/PI4K2A</td>
<td>http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2498</td>
</tr>
<tr>
<td>PI3Ky</td>
<td>http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2156</td>
</tr>
<tr>
<td>PI4KIIβ/PI4K2B</td>
<td>http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2499</td>
</tr>
<tr>
<td>PI3Kδ</td>
<td>http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2155</td>
</tr>
<tr>
<td>p85α/PIK3R1</td>
<td>http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2503</td>
</tr>
<tr>
<td>p85β/PIK3R2</td>
<td>http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2504</td>
</tr>
<tr>
<td>p55y/PIK3R3</td>
<td>http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2505</td>
</tr>
<tr>
<td>p150/VPS15/PIK3R4</td>
<td>http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2157</td>
</tr>
<tr>
<td>p101/PIK3R5</td>
<td>http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2506</td>
</tr>
<tr>
<td>p87/PIK3R6</td>
<td>http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2507</td>
</tr>
<tr>
<td>C2α/PIK3C2A</td>
<td>http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2150</td>
</tr>
<tr>
<td>C2β/PIK3C2B</td>
<td>http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2151</td>
</tr>
<tr>
<td>C2γ/PIK3C2G</td>
<td>http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2288</td>
</tr>
<tr>
<td>VPS34</td>
<td>http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2152</td>
</tr>
</tbody>
</table>

References

42. Fraser C, Carragher NO and Unciti-Broceta A. (2016) eCF309: a potent, selective and cell-permeable mTOR inhibitor Medchemcomm 7: 471-477

69
88

