Regulators of G protein Signaling (RGS) proteins (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

Mohammed Alqinyah¹, Christopher Bodle², Josephine Bou Daghe³, Bandana Chakravarti², Shreoshi P. Choudhuri³, Kir K. Druey⁴, Rory A. Fisher², Kyle J. Gerber⁵, John R. Hepler⁵, Shelley B. Hooks¹, Havish S. Kantheti³, Behirda Karaj⁶, Jae-Kyung Lee¹, Zili Luo², Kirill Martemyanov⁷, Luke D. Mascarenhas³, Hoa Phan Thi Nhu⁵, David L. Roman², Vincent Shaw⁶, Benita Sjögren⁶, Katherine E. Squires⁵, Laurie Sutton⁷, Thomas M. Wilkie³, Keqiang Xie⁷ and Yalda Zolghadri³

¹. University of Georgia, USA
². University of Iowa, USA
³. University of Texas Southwestern Medical Center, USA
⁴. National Institutes of Health, USA
⁵. Emory University, USA
⁶. Michigan State University, USA
⁷. Scripp Research Institute, USA
⁸. Purdue University, USA

Abstract

Regulators of G protein signalling (RGS) proteins display a common RGS domain that interacts with the GTP-bound Gα subunits of heterotrimeric G proteins, enhancing GTP hydrolysis by stabilising the transition state [29, 419, 418], leading to a termination of GPCR signalling. Interactions through protein:protein interactions of many RGS proteins have been identified for targets other than heteromeric G proteins. Sequence analysis of the 20 RGS proteins suggests four families of RGS: RZ, R4, R7 and R12 families. Many of these proteins have been identified to have effects other than through targeting G proteins. Included here is RGS4 for which a number of pharmacological inhibitors have been described.

Contents

This is a citation summary for Regulators of G protein Signaling (RGS) proteins in the Guide to Pharmacology database (GtoPdb). It exists purely as an adjunct to the database to facilitate the recognition of citations to and from the database by citation analyzers. Readers will almost certainly want to visit the relevant sections of the database which are given here under database links.

GtoPdb is an expert-driven guide to pharmacological targets and the substances that act on them. GtoPdb is a reference work which is most usefully represented as an on-line database. As in any publication this work should be appropriately cited, and the papers it cites should also be recognized. This document provides a citation for the relevant parts of the database, and also provides a reference list for the research cited by those parts.

Please note that the database version for the citations given in GtoPdb are to the most recent preceding version in which the family or its subfamilies and targets were substantially changed. The links below are to the current
version. If you need to consult the cited version, rather than the most recent version, please contact the GtoPdb curators.

Database links

Regulators of G protein Signaling (RGS) proteins
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=891

RZ family
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=892

Targets
- RGS17(regulator of G-protein signaling 17)
 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2801
- RGS19(regulator of G-protein signaling 19)
 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2802
- RGS20(regulator of G-protein signaling 20)
 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2803

R4 family
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=893

Targets
- RGS1(regulator of G-protein signaling 1)
 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2804
- RGS2(regulator of G-protein signaling 2)
 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2808
- RGS3(regulator of G-protein signaling 3)
 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2810
- RGS4(regulator of G-protein signaling 4)
 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2811
- RGS5(regulator of G-protein signaling 5)
 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2812
- RGS8(regulator of G-protein signaling 8)
 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2813
- RGS13(regulator of G-protein signaling 13)
 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2805
- RGS16(regulator of G-protein signaling 16)
 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2806
- RGS18(regulator of G-protein signaling 18)
 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2807
- RGS21(regulator of G-protein signaling 21)
 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2809

R7 family
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=894

Targets
- RGS6(regulator of G-protein signaling 6)
 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2815
- RGS7(regulator of G-protein signaling 7)
 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2816
- RGS9(regulator of G-protein signaling 9)
 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2817
- RGS11(regulator of G-protein signaling 11)
 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2814

R12 family
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=895

Targets

- RGS10 (regulator of G-protein signaling 10)
 - http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2818
- RGS12 (regulator of G-protein signaling 12)
 - http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2819
- RGS14 (regulator of G-protein signaling 14)
 - http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2820

References

5. Allen Brain Atlas. RGS14

BellBrook Labs. RGScreen™Service.

98. EMBL-EBI Expression Atlas. RGS14 regulator of G-protein signaling 14

145. Heximer SP, Cristillo AD and Forsdyke DR. (1997) Comparison of mRNA expression of two regulators of
G-protein signaling, RGS1/BL34/1R20 and RGS2/G0S8, in cultured human blood mononuclear cells. DNA Cell Biol. 16: 589-98 [PMID:9174164]

162. Huang J, Nalli AD, Mahavadi S, Kumar DP and Murthy KS. (2014) Inhibition of Go(alpha) activity by Gβγ is mediated by PI 3-kinase-γ- and cSrc-dependent tyrosine phosphorylation of Go(a) and recruitment of...

[PMID:15670159]

[PMID:22040681]

[PMID:17183362]

[PMID:12874248]

[PMID:21389866]

[PMID:17101972]

[PMID:24375609]

[PMID:12140291]

[PMID:14734556]

[PMID:22308195]

[PMID:17939118]

[PMID:15488174]

[PMID:25187114]

[PMID:11262419]

[PMID:16819986]

[PMID:19574389]

[PMID:22210881]

[PMID:25785436]

365. Sarria I, Orlandi C, McCall MA, Gregg RG and Martemyanov KA. (2016) Intermolecular Interaction between Anchoring Subunits Specify Subcellular Targeting and Function of RGS Proteins in Retina ON-

368. Scheschonka A, Dessauer CW, Sinnarajah S, Chidiac P, Shi CS and Kehrl JH. (2000) RGS3 is a GTPase-activating protein for g(ialpha) and g(qalpha) and a potent inhibitor of signaling by GTPase-deficient forms of g(qalpha) and g(11alpha). *Mol. Pharmacol.* **58**: 719-28 [PMID:10999941]

modifying mutations act in concert to allow receptor-independent, steady-state measurements of RGS protein activity. *J Biomol Screen* **14**: 1195-206 [PMID:19820068]