GABA_A receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

Delia Belelli¹, Tim G. Hales¹, Jeremy J. Lambert¹, Bernhard Luscher², Richard Olsen³, John A. Peters¹, Uwe Rudolph⁴ and Werner Sieghart⁵

1. University of Dundee, UK
2. Pennsylvania State University, USA
3. University of California Los Angeles, USA
4. Harvard Medical School, USA
5. Medical University Vienna, Austria

Abstract

The GABA_A receptor is a ligand-gated ion channel of the Cys-loop family that includes the nicotinic acetylcholine, 5-HT₃ and strychnine-sensitive glycine receptors. GABA_A receptor-mediated inhibition within the CNS occurs by fast synaptic transmission, sustained tonic inhibition and temporally intermediate events that have been termed ‘GABA_A, slow’ [41]. GABA_A receptors exist as pentamers of 4TM subunits that form an intrinsic anion selective channel. Sequences of six α, three β, three γ, one δ, three ρ, one ε, one π and one θ GABA_A receptor subunits have been reported in mammals [273, 232, 231, 278]. The π-subunit is restricted to reproductive tissue. Alternatively spliced versions of many subunits exist (e.g. α4- and α6- (both not functional) α5-, β2-, β3- and ρ2), along with RNA editing of the α3 subunit [67]. The three ρ-subunits, (ρ1-3) function as either homo- or hetero-oligomeric assemblies [354, 46]. Receptors formed from ρ-subunits, because of their distinctive pharmacology that includes insensitivity to bicuculline, benzodiazepines and barbiturates, have sometimes been termed GABA_C receptors [354], but they are classified as GABA_A receptors by NC-IUPHAR on the basis of structural and functional criteria [14, 232, 231].

Many GABA_A receptor subtypes contain α-, β- and γ-subunits with the likely stoichiometry 2α.2β.1γ [164, 232]. It is thought that the majority of GABA_A receptors harbour a single type of α- and β -subunit variant. The α1β2γ2 hetero-oligomer constitutes the largest population of GABA_A receptors in the CNS, followed by the α2β3γ2 and α3β3γ2 isoforms. Receptors that incorporate the α4- α5-or α6-subunit, or the β1-, γ1-, γ3-, δ-, ε-, and ρ-subunits, are less numerous, but they may nonetheless serve important functions. For example, extrasynaptically located receptors that contain α6- and δ-subunits in cerebellar granule cells, or an α4- and δ-subunit in dentate gyrus granule cells and thalamic neurones, mediate a tonic current that is important for neuronal excitability in response to ambient concentrations of GABA [205, 268, 79, 17, 283]. GABA binding occurs at the β+/α- subunit interface and the homologous γ+/α- subunits interface creates the benzodiazepine site. A second site for benzodiazepine binding has recently been postulated to occur at the α+/β- interface ([250]; reviewed by [277]). The particular α- and γ-subunit isoforms exhibit marked effects on recognition and/or efficacy at the benzodiazepine site. Thus, receptors incorporating either α4- or α6-subunits are not recognised by ‘classical’ benzodiazepines, such as flunitrazepam (but see [351]). The trafficking, cell surface expression, internalisation and function of GABA_A receptors and their subunits are discussed in detail in several recent
reviews [48, 136, 184, 311] but one point worthy of note is that receptors incorporating the γ2 subunit (except when associated with α5) cluster at the postsynaptic membrane (but may distribute dynamically between synaptic and extrasynaptic locations), whereas as those incorporating the d subunit appear to be exclusively extrasynaptic.

NC-IUPHAR [14, 232] class the GABA_A receptors according to their subunit structure, pharmacology and receptor function. Currently, eleven native GABA_A receptors are classed as conclusively identified (i.e., α1β2γ2, α1β2γ2, α3β2γ2, α4β2γ2, α4β3γ2, α5β2γ2, α6β2γ2, α6β3γ2 and p) with further receptor isoforms occurring with high probability, or only tentatively [232, 231]. It is beyond the scope of this Guide to discuss the pharmacology of individual GABA_A receptor isoforms in detail; such information can be gleaned in the reviews [14, 91, 164, 169, 140, 273, 212, 232, 231] and [8, 7]. Agents that discriminate between α-subunit isoforms are noted in the table and additional agents that demonstrate selectivity between receptor isoforms, for example via β-subunit selectivity, are indicated in the text below. The distinctive agonist and antagonist pharmacology of p receptors is summarised in the table and additional aspects are reviewed in [354, 46, 141, 219].

Several high-resolution cryo-electron microscopy structures have been described in which the full-length human α1β3γ2L GABA_A receptor in lipid nanodiscs is bound to the channel-blocker picrotoxin, the competitive antagonist bicuculline, the agonist GABA (γ-aminobutyric acid), and the classical benzodiazepines alprazolam and diazepam [194].

Contents

This is a citation summary for GABA_A receptors in the **Guide to Pharmacology** database (GtoPdb). It exists purely as an adjunct to the database to facilitate the recognition of citations to and from the database by citation analyzers. Readers will almost certainly want to visit the relevant sections of the database which are given here under database links.

GtoPdb is an expert-driven guide to pharmacological targets and the substances that act on them. GtoPdb is a reference work which is most usefully represented as an on-line database. As in any publication this work should be appropriately cited, and the papers it cites should also be recognized. This document provides a citation for the relevant parts of the database, and also provides a reference list for the research cited by those parts.

Please note that the database version for the citations given in GtoPdb are to the most recent preceding version in which the family or its subfamilies and targets were substantially changed. The links below are to the current version. If you need to consult the cited version, rather than the most recent version, please contact the GtoPdb curators.

Database links

GABA_A receptors

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=72

Introduction to GABA_A receptors

http://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=72

Channels and Subunits

GABA_A receptor α1 subunit

http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=404

GABA_A receptor α2 subunit

http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=405

GABA_A receptor α3 subunit

http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=406

2
GABA_A receptor α4 subunit
GABA_A receptor α5 subunit
GABA_A receptor α6 subunit
GABA_A receptor β1 subunit
GABA_A receptor β2 subunit
GABA_A receptor β3 subunit
GABA_A receptor γ1 subunit
GABA_A receptor γ2 subunit
GABA_A receptor γ3 subunit
GABA_A receptor δ subunit
GABA_A receptor ε subunit
GABA_A receptor θ subunit
GABA_A receptor π subunit
GABA_A receptor ρ1 subunit
GABA_A receptor ρ2 subunit
GABA_A receptor ρ3 subunit

References

65. Cutting GR, Curristin S, Zoghbi H, O'Hara B, Seldin MF and Uhl GR. (1992) Identification of a putative gamma-aminobutyric acid (GABA) receptor subunit rho2 cDNA and colocalization of the genes encoding rho2 (GABRR2) and rho1 (GABRR1) to human chromosome 6q14-q21 and mouse chromosome 4. Genomics 12: 801-6 [PMID:1315307]

77. Enz R and Cutting GR. (1999) GABAC receptor rho subunits are heterogeneously expressed in the human

100. Greger V, Knoll JH, Woelf E, Glatt K, Tyndale RF, DeLorey TM, Olsen RW, Tobin AJ, Sikela JM and Nakatsu Y. (1995) The gamma-aminobutyric acid receptor gamma 3 subunit gene (GABRG3) is tightly linked to the alpha 5 subunit gene (GABRA5) on human chromosome 15q11-q13 and is transcribed in the same orientation. Genomics 26: 258-64 [PMID:7601451]

129. HUGO Gene Nomenclature Committee at the European Bioinformatics Institute. .

144. Kawaharada S, Nakanishi M, Nakanishi N, Hazama K, Higashino M, Yasuhiro T, Lewis A, Clark GS,

159. Krasowski MD, Koltchine VV, Rick CE, Ye Q, Finn SE and Harrison NL. (1998) Propofol and other intravenous anesthetics have sites of action on the gamma-aminobutyric acid type A receptor distinct from

subunit splice variant of the human GABA(A) receptor. *Brain Res. Mol. Brain Res.* **78**: 201-3 [PMID:10891602]

280. Sinkkonen ST, Hanna MC, Kirkness EF and Korpi ER. (2000) GABA(A) receptor epsilon and theta subunits display unusual structural variation between species and are enriched in the rat locus ceruleus. *J.

283. Smith SS. (2013) α4βδ GABAA receptors and tonic inhibitory current during adolescence: effects on mood and synaptic plasticity. *Front Neural Circuits* **7**: 135 [PMID:24027497]

Vargas-Caballero M, Martin LJ, Salter MW, Orser BA and Paulsen O. (2010) alpha5 Subunit-containing GABA(A) receptors mediate a slowly decaying inhibitory synaptic current in CA1 pyramidal neurons following Schaffer collateral activation. *Neuropharmacology* **58**: 668-75 [PMID:19941877]

defines a putative new subunit class of the GABAA neurotransmitter receptor. *Genomics* **45**: 1-10 [PMID:9339354]

GABA\textsubscript{A} receptor alpha subunit. *FEBS Lett.* \textbf{258}: 119-22 [PMID:2556293]

351. You H, Kozuska JL, Paulsen IM and Dunn SM. (2010) Benzodiazepine modulation of the rat GABA\textsubscript{A} receptor $\alpha_4\beta_3\gamma_2L$ subtype expressed in Xenopus oocytes. *Neuropharmacology* \textbf{59}: 527-33 [PMID:20638393]

