IUPHAR/BPS Guide to Pharmacology CITE
https://doi.org/10.2218/gtopdb/F69/2019.4

Calcium- and sodium-activated potassium channels (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database



Richard Aldrich1, K. George Chandy2, Stephan Grissmer3, George A. Gutman2, Leonard K. Kaczmarek4, Aguan D. Wei5 and Heike Wulff6
  1. Stanford University, USA
  2. University of California Irvine, USA
  3. Ulm University, Germany
  4. Yale University, USA
  5. Washington University, USA
  6. University of California Davis, USA


Abstract

Calcium- and sodium- activated potassium channels are members of the 6TM family of K channels which comprises the voltage-gated KV subfamilies, including the KCNQ subfamily, the EAG subfamily (which includes herg channels), the Ca2+-activated Slo subfamily (actually with 6 or 7TM) and the Ca2+- and Na+-activated SK subfamily (nomenclature as agreed by the NC-IUPHAR Subcommittee on Calcium- and sodium-activated potassium channels [124]). As for the 2TM family, the pore-forming a subunits form tetramers and heteromeric channels may be formed within subfamilies (e.g. KV1.1 with KV1.2; KCNQ2 with KCNQ3).

Contents

This is a citation summary for Calcium- and sodium-activated potassium channels in the Guide to Pharmacology database (GtoPdb). It exists purely as an adjunct to the database to facilitate the recognition of citations to and from the database by citation analyzers. Readers will almost certainly want to visit the relevant sections of the database which are given here under database links.

GtoPdb is an expert-driven guide to pharmacological targets and the substances that act on them. GtoPdb is a reference work which is most usefully represented as an on-line database. As in any publication this work should be appropriately cited, and the papers it cites should also be recognized. This document provides a citation for the relevant parts of the database, and also provides a reference list for the research cited by those parts.

Please note that the database version for the citations given in GtoPdb are to the most recent preceding version in which the family or its subfamilies and targets were substantially changed. The links below are to the current version. If you need to consult the cited version, rather than the most recent version, please contact the GtoPdb curators.

Database links

Calcium- and sodium-activated potassium channels
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=69
Introduction to Calcium- and sodium-activated potassium channels
http://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=69
    Channels and Subunits
            KCa1.1
            http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=380
            KCa2.1
            http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=381
            KCa2.2
            http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=382
            KCa2.3
            http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=383
            KCa3.1
            http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=384
            KNa1.1
            http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=385
            KNa1.2
            http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=386
            KCa5.1
            http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=387

References

  1. Adelman JP, Maylie J and Sah P. (2012) Small-conductance Ca2+-activated K+ channels: form and function. Annu. Rev. Physiol. 74: 245-69 [PMID:21942705]
  2. Allen D, Nakayama S, Kuroiwa M, Nakano T, Palmateer J, Kosaka Y, Ballesteros C, Watanabe M, Bond CT and Luján R et al.. (2011) SK2 channels are neuroprotective for ischemia-induced neuronal cell death. J. Cereb. Blood Flow Metab. 31: 2302-12 [PMID:21712833]
  3. Alviña K and Khodakhah K. (2010) KCa channels as therapeutic targets in episodic ataxia type-2. J. Neurosci. 30: 7249-57 [PMID:20505091]
  4. Anderson NJ, Slough S and Watson WP. (2006) In vivo characterisation of the small-conductance KCa (SK) channel activator 1-ethyl-2-benzimidazolinone (1-EBIO) as a potential anticonvulsant. Eur. J. Pharmacol. 546: 48-53 [PMID:16925994]
  5. Andolfo I, Russo R, Manna F, Shmukler BE, Gambale A, Vitiello G, De Rosa G, Brugnara C, Alper SL and Snyder LM et al.. (2015) Novel Gardos channel mutations linked to dehydrated hereditary stomatocytosis (xerocytosis). Am. J. Hematol. 90: 921-6 [PMID:26178367]
  6. Armstrong WE, Rubrum A, Teruyama R, Bond CT and Adelman JP. (2005) Immunocytochemical localization of small-conductance, calcium-dependent potassium channels in astrocytes of the rat supraoptic nucleus. J. Comp. Neurol. 491: 175-85 [PMID:16134141]
  7. Ataga KI, Orringer EP, Styles L, Vichinsky EP, Swerdlow P, Davis GA, Desimone PA and Stocker JW. (2006) Dose-escalation study of ICA-17043 in patients with sickle cell disease. Pharmacotherapy 26: 1557-64 [PMID:17064199]
  8. Ayabe T, Wulff H, Darmoul D, Cahalan MD, Chandy KG and Ouellette AJ. (2002) Modulation of mouse Paneth cell alpha-defensin secretion by mIKCa1, a Ca2+-activated, intermediate conductance potassium channel. J. Biol. Chem. 277: 3793-800 [PMID:11724775]
  9. Bao L, Rapin AM, Holmstrand EC and Cox DH. (2002) Elimination of the BK(Ca) channel's high-affinity Ca(2+) sensitivity. J. Gen. Physiol. 120: 173-89 [PMID:12149279]
  10. Barcia G, Fleming MR, Deligniere A, Gazula VR, Brown MR, Langouet M, Chen H, Kronengold J, Abhyankar A and Cilio R et al.. (2012) De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat. Genet. 44: 1255-9 [PMID:23086397]
  11. Barfod ET, Moore AL and Lidofsky SD. (2001) Cloning and functional expression of a liver isoform of the small conductance Ca2+-activated K+ channel SK3. Am. J. Physiol., Cell Physiol. 280: C836-42 [PMID:11245600]
  12. Bausch AE, Dieter R, Nann Y, Hausmann M, Meyerdierks N, Kaczmarek LK, Ruth P and Lukowski R. (2015) The sodium-activated potassium channel Slack is required for optimal cognitive flexibility in mice. Learn. Mem. 22: 323-35 [PMID:26077685]
  13. Begenisich T, Nakamoto T, Ovitt CE, Nehrke K, Brugnara C, Alper SL and Melvin JE. (2004) Physiological roles of the intermediate conductance, Ca2+-activated potassium channel Kcnn4. J. Biol. Chem. 279: 47681-7 [PMID:15347667]
  14. Benton DC, Monaghan AS, Hosseini R, Bahia PK, Haylett DG and Moss GW. (2003) Small conductance Ca2+-activated K+ channels formed by the expression of rat SK1 and SK2 genes in HEK 293 cells. J. Physiol. (Lond.) 553: 13-9 [PMID:14555714]
  15. Bhattacharjee A, Gan L and Kaczmarek LK. (2002) Localization of the Slack potassium channel in the rat central nervous system. J. Comp. Neurol. 454: 241-54 [PMID:12442315]
  16. Bhattacharjee A, Joiner WJ, Wu M, Yang Y, Sigworth FJ and Kaczmarek LK. (2003) Slick (Slo2.1), a rapidly-gating sodium-activated potassium channel inhibited by ATP. J. Neurosci. 23: 11681-91 [PMID:14684870]
  17. Bhattacharjee A and Kaczmarek LK. (2005) For K+ channels, Na+ is the new Ca2+. Trends Neurosci. 28: 422-8 [PMID:15979166]
  18. Bhattacharjee A, von Hehn CA, Mei X and Kaczmarek LK. (2005) Localization of the Na+-activated K+ channel Slick in the rat central nervous system. J. Comp. Neurol. 484: 80-92 [PMID:15717307]
  19. Bildl W, Strassmaier T, Thurm H, Andersen J, Eble S, Oliver D, Knipper M, Mann M, Schulte U and Adelman JP et al.. (2004) Protein kinase CK2 is coassembled with small conductance Ca(2+)-activated K+ channels and regulates channel gating. Neuron 43: 847-58 [PMID:15363395]
  20. Bischoff U, Vogel W and Safronov BV. (1998) Na+-activated K+ channels in small dorsal root ganglion neurones of rat. J. Physiol. (Lond.) 510 ( Pt 3): 743-54 [PMID:9660890]
  21. Biton B, Sethuramanujam S, Picchione KE, Bhattacharjee A, Khessibi N, Chesney F, Lanneau C, Curet O and Avenet P. (2012) The antipsychotic drug loxapine is an opener of the sodium-activated potassium channel slack (Slo2.2). J. Pharmacol. Exp. Ther. 340: 706-15 [PMID:22171093]
  22. Blank T, Nijholt I, Kye MJ and Spiess J. (2004) Small conductance Ca2+-activated K+ channels as targets of CNS drug development. Curr Drug Targets CNS Neurol Disord 3: 161-7 [PMID:15180477]
  23. Boettger MK, Till S, Chen MX, Anand U, Otto WR, Plumpton C, Trezise DJ, Tate SN, Bountra C and Coward K et al.. (2002) Calcium-activated potassium channel SK1- and IK1-like immunoreactivity in injured human sensory neurones and its regulation by neurotrophic factors. Brain 125: 252-63 [PMID:11844726]
  24. Bond CT, Herson PS, Strassmaier T, Hammond R, Stackman R, Maylie J and Adelman JP. (2004) Small conductance Ca2+-activated K+ channel knock-out mice reveal the identity of calcium-dependent afterhyperpolarization currents. J. Neurosci. 24: 5301-6 [PMID:15190101]
  25. Bond CT, Maylie J and Adelman JP. (2005) SK channels in excitability, pacemaking and synaptic integration. Curr. Opin. Neurobiol. 15: 305-11 [PMID:15922588]
  26. Bond CT, Sprengel R, Bissonnette JM, Kaufmann WA, Pribnow D, Neelands T, Storck T, Baetscher M, Jerecic J and Maylie J et al.. (2000) Respiration and parturition affected by conditional overexpression of the Ca2+-activated K+ channel subunit, SK3. Science 289: 1942-6 [PMID:10988076]
  27. Bowen T, Williams N, Norton N, Spurlock G, Wittekindt OH, Morris-Rosendahl DJ, Williams H, Brzustowicz L, Hoogendoorn B and Zammit S et al.. (2001) Mutation screening of the KCNN3 gene reveals a rare frameshift mutation. Mol. Psychiatry 6: 259-60 [PMID:11326292]
  28. Brenker C, Zhou Y, Müller A, Echeverry FA, Trötschel C, Poetsch A, Xia XM, Bönigk W, Lingle CJ and Kaupp UB et al.. (2014) The Ca2+-activated K+ current of human sperm is mediated by Slo3. Elife 3: e01438 [PMID:24670955]
  29. Brenner R, Jegla TJ, Wickenden A, Liu Y and Aldrich RW. (2000) Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4. J. Biol. Chem. 275: 6453-61 [PMID:10692449]
  30. Brown MR, Kronengold J, Gazula VR, Chen Y, Strumbos JG, Sigworth FJ, Navaratnam D and Kaczmarek LK. (2010) Fragile X mental retardation protein controls gating of the sodium-activated potassium channel Slack. Nat. Neurosci. 13: 819-21 [PMID:20512134]
  31. Brown MR, Kronengold J, Gazula VR, Spilianakis CG, Flavell RA, von Hehn CA, Bhattacharjee A and Kaczmarek LK. (2008) Amino-termini isoforms of the Slack K+ channel, regulated by alternative promoters, differentially modulate rhythmic firing and adaptation. J. Physiol. (Lond.) 586: 5161-79 [PMID:18787033]
  32. Brugnara C, de Franceschi L and Alper SL. (1993) Inhibition of Ca(2+)-dependent K+ transport and cell dehydration in sickle erythrocytes by clotrimazole and other imidazole derivatives. J. Clin. Invest. 92: 520-6 [PMID:8326017]
  33. Brugnara C, Gee B, Armsby CC, Kurth S, Sakamoto M, Rifai N, Alper SL and Platt OS. (1996) Therapy with oral clotrimazole induces inhibition of the Gardos channel and reduction of erythrocyte dehydration in patients with sickle cell disease. J. Clin. Invest. 97: 1227-34 [PMID:8636434]
  34. Brähler S, Kaistha A, Schmidt VJ, Wölfle SE, Busch C, Kaistha BP, Kacik M, Hasenau AL, Grgic I and Si H et al.. (2009) Genetic deficit of SK3 and IK1 channels disrupts the endothelium-derived hyperpolarizing factor vasodilator pathway and causes hypertension. Circulation 119: 2323-32 [PMID:19380617]
  35. Budelli G, Hage TA, Wei A, Rojas P, Jong YJ, O'Malley K and Salkoff L. (2009) Na+-activated K+ channels express a large delayed outward current in neurons during normal physiology. Nat. Neurosci. 12: 745-50 [PMID:19412167]
  36. Burnham MP, Bychkov R, Félétou M, Richards GR, Vanhoutte PM, Weston AH and Edwards G. (2002) Characterization of an apamin-sensitive small-conductance Ca(2+)-activated K(+) channel in porcine coronary artery endothelium: relevance to EDHF. Br. J. Pharmacol. 135: 1133-43 [PMID:11877319]
  37. Butler A, Tsunoda S, McCobb DP, Wei A and Salkoff L. (1993) mSlo, a complex mouse gene encoding "maxi" calcium-activated potassium channels. Science 261: 221-4 [PMID:7687074]
  38. Bychkov R, Burnham MP, Richards GR, Edwards G, Weston AH, Félétou M and Vanhoutte PM. (2002) Characterization of a charybdotoxin-sensitive intermediate conductance Ca2+-activated K+ channel in porcine coronary endothelium: relevance to EDHF. Br. J. Pharmacol. 137: 1346-54 [PMID:12466245]
  39. Cao Y, Dreixler JC, Roizen JD, Roberts MT and Houamed KM. (2001) Modulation of recombinant small-conductance Ca(2+)-activated K(+) channels by the muscle relaxant chlorzoxazone and structurally related compounds. J. Pharmacol. Exp. Ther. 296: 683-9 [PMID:11181893]
  40. Cao YJ, Dreixler JC, Couey JJ and Houamed KM. (2002) Modulation of recombinant and native neuronal SK channels by the neuroprotective drug riluzole. Eur. J. Pharmacol. 449: 47-54 [PMID:12163105]
  41. Cardno AG, Bowen T, Guy CA, Jones LA, McCarthy G, Williams NM, Murphy KC, Spurlock G, Gray M and Sanders RD et al.. (1999) CAG repeat length in the hKCa3 gene and symptom dimensions in schizophrenia. Biol. Psychiatry 45: 1592-6 [PMID:10376120]
  42. Castle NA, London DO, Creech C, Fajloun Z, Stocker JW and Sabatier JM. (2003) Maurotoxin: a potent inhibitor of intermediate conductance Ca2+-activated potassium channels. Mol. Pharmacol. 63: 409-18 [PMID:12527813]
  43. Chandy KG, Fantino E, Wittekindt O, Kalman K, Tong LL, Ho TH, Gutman GA, Crocq MA, Ganguli R and Nimgaonkar V et al.. (1998) Isolation of a novel potassium channel gene hSKCa3 containing a polymorphic CAG repeat: a candidate for schizophrenia and bipolar disorder? Mol. Psychiatry 3: 32-7 [PMID:9491810]
  44. Chandy KG, Wulff H, Beeton C, Pennington M, Gutman GA and Cahalan MD. (2004) K+ channels as targets for specific immunomodulation. Trends Pharmacol. Sci. 25: 280-9 [PMID:15120495]
  45. Chang SH, Chang SN, Hwang JJ, Chiang FT, Tseng CD, Lee JK, Lai LP, Lin JL, Wu CK and Tsai CT. (2012) Significant association of rs13376333 in KCNN3 on chromosome 1q21 with atrial fibrillation in a Taiwanese population. Circ. J. 76: 184-8 [PMID:22019810]
  46. Chen H, Kronengold J, Yan Y, Gazula VR, Brown MR, Ma L, Ferreira G, Yang Y, Bhattacharjee A and Sigworth FJ et al.. (2009) The N-terminal domain of Slack determines the formation and trafficking of Slick/Slack heteromeric sodium-activated potassium channels. J. Neurosci. 29: 5654-65 [PMID:19403831]
  47. Chen MX, Gorman SA, Benson B, Singh K, Hieble JP, Michel MC, Tate SN and Trezise DJ. (2004) Small and intermediate conductance Ca(2+)-activated K+ channels confer distinctive patterns of distribution in human tissues and differential cellular localisation in the colon and corpus cavernosum. Naunyn Schmiedebergs Arch. Pharmacol. 369: 602-15 [PMID:15127180]
  48. Chen Y, Yu FH, Surmeier DJ, Scheuer T and Catterall WA. (2006) Neuromodulation of Na+ channel slow inactivation via cAMP-dependent protein kinase and protein kinase C. Neuron 49: 409-20 [PMID:16446144]
  49. Christophersen P and Wulff H. (2015) Pharmacological gating modulation of small- and intermediate-conductance Ca(2+)-activated K(+) channels (KCa2.x and KCa3.1). Channels (Austin) 9: 336-43 [PMID:26217968]
  50. Chung I, Zelivyanskaya M and Gendelman HE. (2002) Mononuclear phagocyte biophysiology influences brain transendothelial and tissue migration: implication for HIV-1-associated dementia. J. Neuroimmunol. 122: 40-54 [PMID:11777542]
  51. Church TW, Weatherall KL, Corrêa SA, Prole DL, Brown JT and Marrion NV. (2015) Preferential assembly of heteromeric small conductance calcium-activated potassium channels. Eur. J. Neurosci. 41: 305-15 [PMID:25421315]
  52. Cingolani LA, Gymnopoulos M, Boccaccio A, Stocker M and Pedarzani P. (2002) Developmental regulation of small-conductance Ca2+-activated K+ channel expression and function in rat Purkinje neurons. J. Neurosci. 22: 4456-67 [PMID:12040053]
  53. Coghlan MJ, Carroll WA and Gopalakrishnan M. (2001) Recent developments in the biology and medicinal chemistry of potassium channel modulators: update from a decade of progress. J. Med. Chem. 44: 1627-53 [PMID:11356099]
  54. Coleman N, Brown BM, Oliván-Viguera A, Singh V, Olmstead MM, Valero MS, Köhler R and Wulff H. (2014) New positive Ca2+-activated K+ channel gating modulators with selectivity for KCa3.1. Mol. Pharmacol. 86: 342-57 [PMID:24958817]
  55. Coleman N, Nguyen HM, Cao Z, Brown BM, Jenkins DP, Zolkowska D, Chen YJ, Tanaka BS, Goldin AL and Rogawski MA et al.. (2015) The riluzole derivative 2-amino-6-trifluoromethylthio-benzothiazole (SKA-19), a mixed KCa2 activator and NaV blocker, is a potent novel anticonvulsant. Neurotherapeutics 12: 234-49 [PMID:25256961]
  56. Cox DH. (2005) The BKCa channel's Ca2+-binding sites, multiple sites, multiple ions. J. Gen. Physiol. 125: 253-5 [PMID:15738047]
  57. D'hoedt D, Hirzel K, Pedarzani P and Stocker M. (2004) Domain analysis of the calcium-activated potassium channel SK1 from rat brain. Functional expression and toxin sensitivity. J. Biol. Chem. 279: 12088-92 [PMID:14761961]
  58. Dai L, Garg V and Sanguinetti MC. (2010) Activation of Slo2.1 channels by niflumic acid. J. Gen. Physiol. 135: 275-95 [PMID:20176855]
  59. Damkjaer M, Nielsen G, Bodendiek S, Staehr M, Gramsbergen JB, de Wit C, Jensen BL, Simonsen U, Bie P and Wulff H et al.. (2012) Pharmacological activation of KCa3.1/KCa2.3 channels produces endothelial hyperpolarization and lowers blood pressure in conscious dogs. Br. J. Pharmacol. 165: 223-34 [PMID:21699504]
  60. de Los Angeles Tejada M, Stolpe K, Meinild AK and Klaerke DA. (2012) Clofilium inhibits Slick and Slack potassium channels. Biologics 6: 465-70 [PMID:23271893]
  61. DeCoursey TE, Chandy KG, Gupta S and Cahalan MD. (1985) Voltage-dependent ion channels in T-lymphocytes. J. Neuroimmunol. 10: 71-95 [PMID:2414315]
  62. Desai R, Peretz A, Idelson H, Lazarovici P and Attali B. (2000) Ca2+-activated K+ channels in human leukemic Jurkat T cells. Molecular cloning, biochemical and functional characterization. J. Biol. Chem. 275: 39954-63 [PMID:10991935]
  63. Deschaux O and Bizot JC. (2005) Apamin produces selective improvements of learning in rats. Neurosci. Lett. 386: 5-8 [PMID:15985330]
  64. Deschaux O, Bizot JC and Goyffon M. (1997) Apamin improves learning in an object recognition task in rats. Neurosci. Lett. 222: 159-62 [PMID:9148239]
  65. Devor DC, Singh AK, Lambert LC, DeLuca A, Frizzell RA and Bridges RJ. (1999) Bicarbonate and chloride secretion in Calu-3 human airway epithelial cells. J. Gen. Physiol. 113: 743-60 [PMID:10228185]
  66. Di L, Srivastava S, Zhdanova O, Sun Y, Li Z and Skolnik EY. (2010) Nucleoside diphosphate kinase B knock-out mice have impaired activation of the K+ channel KCa3.1, resulting in defective T cell activation. J. Biol. Chem. 285: 38765-71 [PMID:20884616]
  67. Diness JG, Skibsbye L, Jespersen T, Bartels ED, Sørensen US, Hansen RS and Grunnet M. (2011) Effects on atrial fibrillation in aged hypertensive rats by Ca(2+)-activated K(+) channel inhibition. Hypertension 57: 1129-35 [PMID:21502564]
  68. Dolga AM, Terpolilli N, Kepura F, Nijholt IM, Knaus HG, D'Orsi B, Prehn JH, Eisel UL, Plant T and Plesnila N et al.. (2011) KCa2 channels activation prevents [Ca2+]i deregulation and reduces neuronal death following glutamate toxicity and cerebral ischemia. Cell Death Dis 2: e147 [PMID:21509037]
  69. Dreixler JC, Bian J, Cao Y, Roberts MT, Roizen JD and Houamed KM. (2000) Block of rat brain recombinant SK channels by tricyclic antidepressants and related compounds. Eur. J. Pharmacol. 401: 1-7 [PMID:10915830]
  70. Dryer SE. (2003) Molecular identification of the Na+-activated K+ channel. Neuron 37: 727-8 [PMID:12628162]
  71. Egan TM, Dagan D, Kupper J and Levitan IB. (1992) Na(+)-activated K+ channels are widely distributed in rat CNS and in Xenopus oocytes. Brain Res. 584: 319-21 [PMID:1515948]
  72. Egan TM, Dagan D, Kupper J and Levitan IB. (1992) Properties and rundown of sodium-activated potassium channels in rat olfactory bulb neurons. J. Neurosci. 12: 1964-76 [PMID:1578280]
  73. Eichler I, Wibawa J, Grgic I, Knorr A, Brakemeier S, Pries AR, Hoyer J and Köhler R. (2003) Selective blockade of endothelial Ca2+-activated small- and intermediate-conductance K+-channels suppresses EDHF-mediated vasodilation. Br. J. Pharmacol. 138: 594-601 [PMID:12598413]
  74. Ellinor PT, Lunetta KL, Glazer NL, Pfeufer A, Alonso A, Chung MK, Sinner MF, de Bakker PI, Mueller M and Lubitz SA et al.. (2010) Common variants in KCNN3 are associated with lone atrial fibrillation. Nat. Genet. 42: 240-4 [PMID:20173747]
  75. Ellory JC, Culliford SJ, Smith PA, Wolowyk MW and Knaus EE. (1994) Specific inhibition of Ca-activated K channels in red cells by selected dihydropyridine derivatives. Br. J. Pharmacol. 111: 903-5 [PMID:8019767]
  76. Faber ES and Sah P. (2003) Calcium-activated potassium channels: multiple contributions to neuronal function. Neuroscientist 9: 181-94 [PMID:15065814]
  77. Fanger CM, Ghanshani S, Logsdon NJ, Rauer H, Kalman K, Zhou J, Beckingham K, Chandy KG, Cahalan MD and Aiyar J. (1999) Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa channel, IKCa1. J. Biol. Chem. 274: 5746-54 [PMID:10026195]
  78. Fanger CM, Rauer H, Neben AL, Miller MJ, Rauer H, Wulff H, Rosa JC, Ganellin CR, Chandy KG and Cahalan MD. (2001) Calcium-activated potassium channels sustain calcium signaling in T lymphocytes. Selective blockers and manipulated channel expression levels. J. Biol. Chem. 276: 12249-56 [PMID:11278890]
  79. Fay AJ, Qian X, Jan YN and Jan LY. (2006) SK channels mediate NADPH oxidase-independent reactive oxygen species production and apoptosis in granulocytes. Proc. Natl. Acad. Sci. U.S.A. 103: 17548-53 [PMID:17085590]
  80. Feranchak AP, Doctor RB, Troetsch M, Brookman K, Johnson SM and Fitz JG. (2004) Calcium-dependent regulation of secretion in biliary epithelial cells: the role of apamin-sensitive SK channels. Gastroenterology 127: 903-13 [PMID:15362045]
  81. Feske S, Wulff H and Skolnik EY. (2015) Ion channels in innate and adaptive immunity. Annu. Rev. Immunol. 33: 291-353 [PMID:25861976]
  82. Figueroa KP, Chan P, Schöls L, Tanner C, Riess O, Perlman SL, Geschwind DH and Pulst SM. (2001) Association of moderate polyglutamine tract expansions in the slow calcium-activated potassium channel type 3 with ataxia. Arch. Neurol. 58: 1649-53 [PMID:11594924]
  83. Fioretti B, Castigli E, Calzuola I, Harper AA, Franciolini F and Catacuzzeno L. (2004) NPPB block of the intermediate-conductance Ca2+-activated K+ channel. Eur. J. Pharmacol. 497: 1-6 [PMID:15321728]
  84. Friebel K, Schönherr R, Kinne RW and Kunisch E. (2015) Functional role of the KCa3.1 potassium channel in synovial fibroblasts from rheumatoid arthritis patients. J. Cell. Physiol. 230: 1677-88 [PMID:25545021]
  85. Galeotti N, Ghelardini C, Caldari B and Bartolini A. (1999) Effect of potassium channel modulators in mouse forced swimming test. Br. J. Pharmacol. 126: 1653-9 [PMID:10323599]
  86. Garcia-Valdes J, Zamudio FZ, Toro L, Possani LD and Possan LD. (2001) Slotoxin, alphaKTx1.11, a new scorpion peptide blocker of MaxiK channels that differentiates between alpha and alpha+beta (beta1 or beta4) complexes. FEBS Lett. 505: 369-73 [PMID:11576530]
  87. GARDOS G. (1958) The function of calcium in the potassium permeability of human erythrocytes. Biochim. Biophys. Acta 30: 653-4 [PMID:13618284]
  88. Garg P, Gardner A, Garg V and Sanguinetti MC. (2013) Structural basis of ion permeation gating in Slo2.1 K+ channels. J. Gen. Physiol. 142: 523-42 [PMID:24166878]
  89. Garg P and Sanguinetti MC. (2012) Structure-activity relationship of fenamates as Slo2.1 channel activators. Mol. Pharmacol. 82: 795-802 [PMID:22851714]
  90. Ghanshani S, Coleman M, Gustavsson P, Wu AC, Gargus JJ, Gutman GA, Dahl N, Mohrenweiser H and Chandy KG. (1998) Human calcium-activated potassium channel gene KCNN4 maps to chromosome 19q13.2 in the region deleted in diamond-blackfan anemia. Genomics 51: 160-1 [PMID:9693050]
  91. Ghanshani S, Wulff H, Miller MJ, Rohm H, Neben A, Gutman GA, Cahalan MD and Chandy KG. (2000) Up-regulation of the IKCa1 potassium channel during T-cell activation. Molecular mechanism and functional consequences. J. Biol. Chem. 275: 37137-49 [PMID:10961988]
  92. Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, Scott G, Steffen D, Worley KC and Burch PE et al.. (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428: 493-521 [PMID:15057822]
  93. Glogowska E, Lezon-Geyda K, Maksimova Y, Schulz VP and Gallagher PG. (2015) Mutations in the Gardos channel (KCNN4) are associated with hereditary xerocytosis. Blood 126: 1281-4 [PMID:26198474]
  94. Grgic I, Eichler I, Heinau P, Si H, Brakemeier S, Hoyer J and Köhler R. (2005) Selective blockade of the intermediate-conductance Ca2+-activated K+ channel suppresses proliferation of microvascular and macrovascular endothelial cells and angiogenesis in vivo. Arterioscler. Thromb. Vasc. Biol. 25: 704-9 [PMID:15662023]
  95. Gribkoff VK, Starrett Jr JE, Dworetzky SI, Hewawasam P, Boissard CG, Cook DA, Frantz SW, Heman K, Hibbard JR and Huston K et al.. (2001) Targeting acute ischemic stroke with a calcium-sensitive opener of maxi-K potassium channels. Nat. Med. 7: 471-7 [PMID:11283675]
  96. Grissmer S, Lewis RS and Cahalan MD. (1992) Ca(2+)-activated K+ channels in human leukemic T cells. J. Gen. Physiol. 99: 63-84 [PMID:1371308]
  97. Grissmer S, Nguyen AN and Cahalan MD. (1993) Calcium-activated potassium channels in resting and activated human T lymphocytes. Expression levels, calcium dependence, ion selectivity, and pharmacology. J. Gen. Physiol. 102: 601-30 [PMID:7505804]
  98. Grunnet M, Jespersen T, Angelo K, Frøkjaer-Jensen C, Klaerke DA, Olesen SP and Jensen BS. (2001) Pharmacological modulation of SK3 channels. Neuropharmacology 40: 879-87 [PMID:11378158]
  99. Hammond RS, Bond CT, Strassmaier T, Ngo-Anh TJ, Adelman JP, Maylie J and Stackman RW. (2006) Small-conductance Ca2+-activated K+ channel type 2 (SK2) modulates hippocampal learning, memory, and synaptic plasticity. J. Neurosci. 26: 1844-53 [PMID:16467533]
  100. Haugaard MM, Hesselkilde EZ, Pehrson S, Carstensen H, Flethøj M, Præstegaard KF, Sørensen US, Diness JG, Grunnet M and Buhl R et al.. (2015) Pharmacologic inhibition of small-conductance calcium-activated potassium (SK) channels by NS8593 reveals atrial antiarrhythmic potential in horses. Heart Rhythm 12: 825-35 [PMID:25542425]
  101. Herrera GM, Pozo MJ, Zvara P, Petkov GV, Bond CT, Adelman JP and Nelson MT. (2003) Urinary bladder instability induced by selective suppression of the murine small conductance calcium-activated potassium (SK3) channel. J. Physiol. (Lond.) 551: 893-903 [PMID:12813145]
  102. Hess D, Nanou E and El Manira A. (2007) Characterization of Na+-activated K+ currents in larval lamprey spinal cord neurons. J. Neurophysiol. 97: 3484-93 [PMID:17329626]
  103. Hilgers RH and Webb RC. (2007) Reduced expression of SKCa and IKCa channel proteins in rat small mesenteric arteries during angiotensin II-induced hypertension. Am. J. Physiol. Heart Circ. Physiol. 292: H2275-84 [PMID:17209000]
  104. Hirschberg B, Maylie J, Adelman JP and Marrion NV. (1998) Gating of recombinant small-conductance Ca-activated K+ channels by calcium. J. Gen. Physiol. 111: 565-81 [PMID:9524139]
  105. Hite RK, Yuan P, Li Z, Hsuing Y, Walz T and MacKinnon R. (2015) Cryo-electron microscopy structure of the Slo2.2 Na(+)-activated K(+) channel. Nature 527: 198-203 [PMID:26436452]
  106. Hopf FW, Bowers MS, Chang SJ, Chen BT, Martin M, Seif T, Cho SL, Tye K and Bonci A. (2010) Reduced nucleus accumbens SK channel activity enhances alcohol seeking during abstinence. Neuron 65: 682-94 [PMID:20223203]
  107. Hopf FW, Seif T and Bonci A. (2011) The SK channel as a novel target for treating alcohol use disorders. Channels (Austin) 5: 289-92 [PMID:21712648]
  108. Hopf FW, Simms JA, Chang SJ, Seif T, Bartlett SE and Bonci A. (2011) Chlorzoxazone, an SK-type potassium channel activator used in humans, reduces excessive alcohol intake in rats. Biol. Psychiatry 69: 618-24 [PMID:21195386]
  109. Hosseini R, Benton DC, Dunn PM, Jenkinson DH and Moss GW. (2001) SK3 is an important component of K(+) channels mediating the afterhyperpolarization in cultured rat SCG neurones. J. Physiol. (Lond.) 535: 323-34 [PMID:11533126]
  110. Hougaard C, Eriksen BL, Jørgensen S, Johansen TH, Dyhring T, Madsen LS, Strøbaek D and Christophersen P. (2007) Selective positive modulation of the SK3 and SK2 subtypes of small conductance Ca2+-activated K+ channels. Br. J. Pharmacol. 151: 655-65 [PMID:17486140]
  111. Hougaard C, Hammami S, Eriksen BL, Sørensen US, Jensen ML, Strøbæk D and Christophersen P. (2012) Evidence for a common pharmacological interaction site on K(Ca)2 channels providing both selective activation and selective inhibition of the human K(Ca)2.1 subtype. Mol. Pharmacol. 81: 210-9 [PMID:22046005]
  112. Hougaard C, Jensen ML, Dale TJ, Miller DD, Davies DJ, Eriksen BL, Strøbaek D, Trezise DJ and Christophersen P. (2009) Selective activation of the SK1 subtype of human small-conductance Ca2+-activated K+ channels by 4-(2-methoxyphenylcarbamoyloxymethyl)-piperidine-1-carboxylic acid tert-butyl ester (GW542573X) is dependent on serine 293 in the S5 segment. Mol. Pharmacol. 76: 569-78 [PMID:19515965]
  113. Huang F, Wang X, Ostertag EM, Nuwal T, Huang B, Jan YN, Basbaum AI and Jan LY. (2013) TMEM16C facilitates Na(+)-activated K+ currents in rat sensory neurons and regulates pain processing. Nat. Neurosci. 16: 1284-90 [PMID:23872594]
  114. Ishii TM, Maylie J and Adelman JP. (1997) Determinants of apamin and d-tubocurarine block in SK potassium channels. J. Biol. Chem. 272: 23195-200 [PMID:9287325]
  115. Ishii TM, Silvia C, Hirschberg B, Bond CT, Adelman JP and Maylie J. (1997) A human intermediate conductance calcium-activated potassium channel. Proc. Natl. Acad. Sci. U.S.A. 94: 11651-6 [PMID:9326665]
  116. Jacobson D, Herson PS, Neelands TR, Maylie J and Adelman JP. (2002) SK channels are necessary but not sufficient for denervation-induced hyperexcitability. Muscle Nerve 26: 817-22 [PMID:12451607]
  117. Jensen BS, Strobaek D, Christophersen P, Jorgensen TD, Hansen C, Silahtaroglu A, Olesen SP and Ahring PK. (1998) Characterization of the cloned human intermediate-conductance Ca2+-activated K+ channel. Am. J. Physiol. 275: C848-56 [PMID:9730970]
  118. Jiang Z, Wallner M, Meera P and Toro L. (1999) Human and rodent MaxiK channel beta-subunit genes: cloning and characterization. Genomics 55: 57-67 [PMID:9888999]
  119. Joiner WJ, Tang MD, Wang LY, Dworetzky SI, Boissard CG, Gan L, Gribkoff VK and Kaczmarek LK. (1998) Formation of intermediate-conductance calcium-activated potassium channels by interaction of Slack and Slo subunits. Nat. Neurosci. 1: 462-9 [PMID:10196543]
  120. Joiner WJ, Wang LY, Tang MD and Kaczmarek LK. (1997) hSK4, a member of a novel subfamily of calcium-activated potassium channels. Proc. Natl. Acad. Sci. U.S.A. 94: 11013-8 [PMID:9380751]
  121. Jäger H, Adelman JP and Grissmer S. (2000) SK2 encodes the apamin-sensitive Ca(2+)-activated K(+) channels in the human leukemic T cell line, Jurkat. FEBS Lett. 469: 196-202 [PMID:10713270]
  122. Jäger H, Dreker T, Buck A, Giehl K, Gress T and Grissmer S. (2004) Blockage of intermediate-conductance Ca2+-activated K+ channels inhibit human pancreatic cancer cell growth in vitro. Mol. Pharmacol. 65: 630-8 [PMID:14978241]
  123. Kaczmarek LK. (2013) Slack, Slick and Sodium-Activated Potassium Channels. ISRN Neurosci 2013: [PMID:24319675]
  124. Kaczmarek LK, Aldrich RW, Chandy KG, Grissmer S, Wei AD and Wulff H. (2017) International Union of Basic and Clinical Pharmacology. C. Nomenclature and Properties of Calcium-Activated and Sodium-Activated Potassium Channels. Pharmacol. Rev. 69: 1-11 [PMID:28267675]
  125. Kaczorowski GJ, Knaus HG, Leonard RJ, McManus OB and Garcia ML. (1996) High-conductance calcium-activated potassium channels; structure, pharmacology, and function. J. Bioenerg. Biomembr. 28: 255-67 [PMID:8807400]
  126. Kameyama M, Kakei M, Sato R, Shibasaki T, Matsuda H and Irisawa H. (1984) Intracellular Na+ activates a K+ channel in mammalian cardiac cells. Nature 309: 354-6 [PMID:6328309]
  127. Kasumu AW, Hougaard C, Rode F, Jacobsen TA, Sabatier JM, Eriksen BL, Strøbæk D, Liang X, Egorova P and Vorontsova D et al.. (2012) Selective positive modulator of calcium-activated potassium channels exerts beneficial effects in a mouse model of spinocerebellar ataxia type 2. Chem. Biol. 19: 1340-53 [PMID:23102227]
  128. Kaushal V, Koeberle PD, Wang Y and Schlichter LC. (2007) The Ca2+-activated K+ channel KCNN4/KCa3.1 contributes to microglia activation and nitric oxide-dependent neurodegeneration. J. Neurosci. 27: 234-44 [PMID:17202491]
  129. Khanna R, Chang MC, Joiner WJ, Kaczmarek LK and Schlichter LC. (1999) hSK4/hIK1, a calmodulin-binding KCa channel in human T lymphocytes. Roles in proliferation and volume regulation. J. Biol. Chem. 274: 14838-49 [PMID:10329683]
  130. Khanna R, Roy L, Zhu X and Schlichter LC. (2001) K+ channels and the microglial respiratory burst. Am. J. Physiol., Cell Physiol. 280: C796-806 [PMID:11245596]
  131. Kim GE and Kaczmarek LK. (2014) Emerging role of the KCNT1 Slack channel in intellectual disability. Front Cell Neurosci 8: 209 [PMID:25120433]
  132. Kim GE, Kronengold J, Barcia G, Quraishi IH, Martin HC, Blair E, Taylor JC, Dulac O, Colleaux L and Nabbout R et al.. (2014) Human slack potassium channel mutations increase positive cooperativity between individual channels. Cell Rep 9: 1661-72 [PMID:25482562]
  133. Kimura T, Takahashi MP, Okuda Y, Kaido M, Fujimura H, Yanagihara T and Sakoda S. (2000) The expression of ion channel mRNAs in skeletal muscles from patients with myotonic muscular dystrophy. Neurosci. Lett. 295: 93-6 [PMID:11090982]
  134. King B, Rizwan AP, Asmara H, Heath NC, Engbers JD, Dykstra S, Bartoletti TM, Hameed S, Zamponi GW and Turner RW. (2015) IKCa channels are a critical determinant of the slow AHP in CA1 pyramidal neurons. Cell Rep 11: 175-82 [PMID:25865881]
  135. Koh DS, Jonas P and Vogel W. (1994) Na(+)-activated K+ channels localized in the nodal region of myelinated axons of Xenopus. J. Physiol. (Lond.) 479 ( Pt 2): 183-97 [PMID:7799220]
  136. Kohler M, Hirschberg B, Bond CT, Kinzie JM, Marrion NV, Maylie J and Adelman JP. (1996) Small-conductance, calcium-activated potassium channels from mammalian brain. Science 273: 1709-14 [PMID:8781233]
  137. Kolski-Andreaco A, Tomita H, Shakkottai VG, Gutman GA, Cahalan MD, Gargus JJ and Chandy KG. (2004) SK3-1C, a dominant-negative suppressor of SKCa and IKCa channels. J. Biol. Chem. 279: 6893-904 [PMID:14638680]
  138. Koronyo-Hamaoui M, Danziger Y, Frisch A, Stein D, Leor S, Laufer N, Carel C, Fennig S, Minoumi M and Apter A et al.. (2002) Association between anorexia nervosa and the hsKCa3 gene: a family-based and case control study. Mol. Psychiatry 7: 82-5 [PMID:11803450]
  139. Köhler R, Brakemeier S, Kühn M, Behrens C, Real R, Degenhardt C, Orzechowski HD, Pries AR, Paul M and Hoyer J. (2001) Impaired hyperpolarization in regenerated endothelium after balloon catheter injury. Circ. Res. 89: 174-9 [PMID:11463725]
  140. Köhler R, Eichler I, Schönfelder H, Grgic I, Heinau P, Si H and Hoyer J. (2005) Impaired EDHF-mediated vasodilation and function of endothelial Ca-activated K channels in uremic rats. Kidney Int. 67: 2280-7 [PMID:15882269]
  141. Köhler R and Hoyer J. (2007) The endothelium-derived hyperpolarizing factor: insights from genetic animal models. Kidney Int. 72: 145-50 [PMID:17457372]
  142. Köhler R, Wulff H, Eichler I, Kneifel M, Neumann D, Knorr A, Grgic I, Kämpfe D, Si H, Wibawa J, Real R, Borner K, Brakemeier S, Orzechowski HD, Reusch HP, Paul M, Chandy KG and Hoyer J. (2003) Blockade of the intermediate-conductance calcium-activated potassium channel as a new therapeutic strategy for restenosis. Circulation 108: 1119-25 [PMID:12939222]
  143. Lam J, Coleman N, Garing AL and Wulff H. (2013) The therapeutic potential of small-conductance KCa2 channels in neurodegenerative and psychiatric diseases. Expert Opin. Ther. Targets 17: 1203-20 [PMID:23883298]
  144. Lappin SC, Dale TJ, Brown JT, Trezise DJ and Davies CH. (2005) Activation of SK channels inhibits epileptiform bursting in hippocampal CA3 neurons. Brain Res. 1065: 37-46 [PMID:16336949]
  145. Li C, Wang F, Yang Y, Fu F, Xu C, Shi L, Li S, Xia Y, Wu G and Cheng X et al.. (2011) Significant association of SNP rs2106261 in the ZFHX3 gene with atrial fibrillation in a Chinese Han GeneID population. Hum. Genet. 129: 239-46 [PMID:21107608]
  146. Ling TY, Wang XL, Chai Q, Lau TW, Koestler CM, Park SJ, Daly RC, Greason KL, Jen J and Wu LQ et al.. (2013) Regulation of the SK3 channel by microRNA-499--potential role in atrial fibrillation. Heart Rhythm 10: 1001-9 [PMID:23499625]
  147. Lingle CJ. (2002) Setting the stage for molecular dissection of the regulatory components of BK channels. J. Gen. Physiol. 120: 261-5 [PMID:12198086]
  148. Litt M, LaMorticella D, Bond CT and Adelman JP. (1999) Gene structure and chromosome mapping of the human small-conductance calcium-activated potassium channel SK1 gene (KCNN1). Cytogenet. Cell Genet. 86: 70-3 [PMID:10516439]
  149. Liu G, Shi J, Yang L, Cao L, Park SM, Cui J and Marx SO. (2004) Assembly of a Ca2+-dependent BK channel signaling complex by binding to beta2 adrenergic receptor. EMBO J. 23: 2196-205 [PMID:15141163]
  150. Logsdon NJ, Kang J, Togo JA, Christian EP and Aiyar J. (1997) A novel gene, hKCa4, encodes the calcium-activated potassium channel in human T lymphocytes. J. Biol. Chem. 272: 32723-6 [PMID:9407042]
  151. Lu R, Bausch AE, Kallenborn-Gerhardt W, Stoetzer C, Debruin N, Ruth P, Geisslinger G, Leffler A, Lukowski R and Schmidtko A. (2015) Slack channels expressed in sensory neurons control neuropathic pain in mice. J. Neurosci. 35: 1125-35 [PMID:25609627]
  152. Lu S, Das P, Fadool DA and Kaczmarek LK. (2010) The slack sodium-activated potassium channel provides a major outward current in olfactory neurons of Kv1.3-/- super-smeller mice. J. Neurophysiol. 103: 3311-9 [PMID:20393063]
  153. Magleby KL. (2003) Gating mechanism of BK (Slo1) channels: so near, yet so far. J. Gen. Physiol. 121: 81-96 [PMID:12566537]
  154. Mahida S, Mills RW, Tucker NR, Simonson B, Macri V, Lemoine MD, Das S, Milan DJ and Ellinor PT. (2014) Overexpression of KCNN3 results in sudden cardiac death. Cardiovasc. Res. 101: 326-34 [PMID:24296650]
  155. Martin HC, Kim GE, Pagnamenta AT, Murakami Y, Carvill GL, Meyer E, Copley RR, Rimmer A, Barcia G and Fleming MR et al.. (2014) Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis. Hum. Mol. Genet. 23: 3200-11 [PMID:24463883]
  156. Matteson DR and Deutsch C. (1984) K channels in T lymphocytes: a patch clamp study using monoclonal antibody adhesion. Nature 307: 468-71 [PMID:6320008]
  157. Mauler F, Hinz V, Horváth E, Schuhmacher J, Hofmann HA, Wirtz S, Hahn MG and Urbahns K. (2004) Selective intermediate-/small-conductance calcium-activated potassium channel (KCNN4) blockers are potent and effective therapeutics in experimental brain oedema and traumatic brain injury caused by acute subdural haematoma. Eur. J. Neurosci. 20: 1761-8 [PMID:15379997]
  158. Meera P, Wallner M, Song M and Toro L. (1997) Large conductance voltage- and calcium-dependent K+ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0-S6), an extracellular N terminus, and an intracellular (S9-S10) C terminus. Proc. Natl. Acad. Sci. U.S.A. 94: 14066-71 [PMID:9391153]
  159. Messier C, Mourre C, Bontempi B, Sif J, Lazdunski M and Destrade C. (1991) Effect of apamin, a toxin that inhibits Ca(2+)-dependent K+ channels, on learning and memory processes. Brain Res. 551: 322-6 [PMID:1913161]
  160. Miller MJ, Rauer H, Tomita H, Rauer H, Gargus JJ, Gutman GA, Cahalan MD and Chandy KG. (2001) Nuclear localization and dominant-negative suppression by a mutant SKCa3 N-terminal channel fragment identified in a patient with schizophrenia. J. Biol. Chem. 276: 27753-6 [PMID:11395478]
  161. Milligan CJ, Li M, Gazina EV, Heron SE, Nair U, Trager C, Reid CA, Venkat A, Younkin DP and Dlugos DJ et al.. (2014) KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. Ann. Neurol. 75: 581-90 [PMID:24591078]
  162. Moczydlowski EG. (2004) BK channel news: full coverage on the calcium bowl. J. Gen. Physiol. 123: 471-3 [PMID:15111642]
  163. Monaghan AS, Benton DC, Bahia PK, Hosseini R, Shah YA, Haylett DG and Moss GW. (2004) The SK3 subunit of small conductance Ca2+-activated K+ channels interacts with both SK1 and SK2 subunits in a heterologous expression system. J. Biol. Chem. 279: 1003-9 [PMID:14559917]
  164. Mourre C, Fournier C and Soumireu-Mourat B. (1997) Apamin, a blocker of the calcium-activated potassium channel, induces neurodegeneration of Purkinje cells exclusively. Brain Res. 778: 405-8 [PMID:9459560]
  165. Mouse Genome Sequencing Consortium, Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R and Alexandersson M et al.. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520-62 [PMID:12466850]
  166. Mulholland PJ, Becker HC, Woodward JJ and Chandler LJ. (2011) Small conductance calcium-activated potassium type 2 channels regulate alcohol-associated plasticity of glutamatergic synapses. Biol. Psychiatry 69: 625-32 [PMID:21056409]
  167. Nanou E and El Manira A. (2007) A postsynaptic negative feedback mediated by coupling between AMPA receptors and Na+-activated K+ channels in spinal cord neurones. Eur. J. Neurosci. 25: 445-50 [PMID:17284185]
  168. Navarro B, Kirichok Y and Clapham DE. (2007) KSper, a pH-sensitive K+ current that controls sperm membrane potential. Proc. Natl. Acad. Sci. U.S.A. 104: 7688-92 [PMID:17460039]
  169. Neelands TR, Herson PS, Jacobson D, Adelman JP and Maylie J. (2001) Small-conductance calcium-activated potassium currents in mouse hyperexcitable denervated skeletal muscle. J. Physiol. (Lond.) 536: 397-407 [PMID:11600675]
  170. Neylon CB, Lang RJ, Fu Y, Bobik A and Reinhart PH. (1999) Molecular cloning and characterization of the intermediate-conductance Ca(2+)-activated K(+) channel in vascular smooth muscle: relationship between K(Ca) channel diversity and smooth muscle cell function. Circ. Res. 85: e33-43 [PMID:10532960]
  171. Nuwer MO, Picchione KE and Bhattacharjee A. (2010) PKA-induced internalization of slack KNa channels produces dorsal root ganglion neuron hyperexcitability. J. Neurosci. 30: 14165-72 [PMID:20962237]
  172. Okazaki N, Kikuno R, Ohara R, Inamoto S, Koseki H, Hiraoka S, Saga Y, Nagase T, Ohara O and Koga H. (2003) Prediction of the coding sequences of mouse homologues of KIAA gene: III. the complete nucleotide sequences of 500 mouse KIAA-homologous cDNAs identified by screening of terminal sequences of cDNA clones randomly sampled from size-fractionated libraries. DNA Res. 10: 167-80 [PMID:14621295]
  173. Oliván-Viguera A, Valero MS, Coleman N, Brown BM, Laría C, Murillo MD, Gálvez JA, Díaz-de-Villegas MD, Wulff H and Badorrey R et al.. (2015) A novel pan-negative-gating modulator of KCa2/3 channels, fluoro-di-benzoate, RA-2, inhibits endothelium-derived hyperpolarization-type relaxation in coronary artery and produces bradycardia in vivo. Mol. Pharmacol. 87: 338-48 [PMID:25468883]
  174. Orfila JE, Shimizu K, Garske AK, Deng G, Maylie J, Traystman RJ, Quillinan N, Adelman JP and Herson PS. (2014) Increasing small conductance Ca2+-activated potassium channel activity reverses ischemia-induced impairment of long-term potentiation. Eur. J. Neurosci. 40: 3179-88 [PMID:25080203]
  175. Ouadid-Ahidouch H, Roudbaraki M, Delcourt P, Ahidouch A, Joury N and Prevarskaya N. (2004) Functional and molecular identification of intermediate-conductance Ca(2+)-activated K(+) channels in breast cancer cells: association with cell cycle progression. Am. J. Physiol., Cell Physiol. 287: C125-34 [PMID:14985237]
  176. Ozgen N, Dun W, Sosunov EA, Anyukhovsky EP, Hirose M, Duffy HS, Boyden PA and Rosen MR. (2007) Early electrical remodeling in rabbit pulmonary vein results from trafficking of intracellular SK2 channels to membrane sites. Cardiovasc. Res. 75: 758-69 [PMID:17588552]
  177. Pandita RK, Rønn LC, Jensen BS and Andersson KE. (2006) Urodynamic effects of intravesical administration of the new small/intermediate conductance calcium activated potassium channel activator NS309 in freely moving, conscious rats. J. Urol. 176: 1220-4 [PMID:16890729]
  178. Parajuli SP, Hristov KL, Soder RP, Kellett WF and Petkov GV. (2013) NS309 decreases rat detrusor smooth muscle membrane potential and phasic contractions by activating SK3 channels. Br. J. Pharmacol. 168: 1611-25 [PMID:23145946]
  179. Parihar AS, Coghlan MJ, Gopalakrishnan M and Shieh CC. (2003) Effects of intermediate-conductance Ca2+-activated K+ channel modulators on human prostate cancer cell proliferation. Eur. J. Pharmacol. 471: 157-64 [PMID:12826234]
  180. Paulais M, Lachheb S and Teulon J. (2006) A Na+- and Cl- -activated K+ channel in the thick ascending limb of mouse kidney. J. Gen. Physiol. 127: 205-15 [PMID:16446508]
  181. Pedarzani P, D'hoedt D, Doorty KB, Wadsworth JD, Joseph JS, Jeyaseelan K, Kini RM, Gadre SV, Sapatnekar SM and Stocker M et al.. (2002) Tamapin, a venom peptide from the Indian red scorpion (Mesobuthus tamulus) that targets small conductance Ca2+-activated K+ channels and afterhyperpolarization currents in central neurons. J. Biol. Chem. 277: 46101-9 [PMID:12239213]
  182. Pedarzani P, McCutcheon JE, Rogge G, Jensen BS, Christophersen P, Hougaard C, Strøbaek D and Stocker M. (2005) Specific enhancement of SK channel activity selectively potentiates the afterhyperpolarizing current I(AHP) and modulates the firing properties of hippocampal pyramidal neurons. J. Biol. Chem. 280: 41404-11 [PMID:16239218]
  183. Pedarzani P, Mosbacher J, Rivard A, Cingolani LA, Oliver D, Stocker M, Adelman JP and Fakler B. (2001) Control of electrical activity in central neurons by modulating the gating of small conductance Ca2+-activated K+ channels. J. Biol. Chem. 276: 9762-9 [PMID:11134030]
  184. Persohn E, Malherbe P and Richards JG. (1992) Comparative molecular neuroanatomy of cloned GABAA receptor subunits in the rat CNS. J. Comp. Neurol. 326: 193-216 [PMID:1336019]
  185. Peña TL, Chen SH, Konieczny SF and Rane SG. (2000) Ras/MEK/ERK Up-regulation of the fibroblast KCa channel FIK is a common mechanism for basic fibroblast growth factor and transforming growth factor-beta suppression of myogenesis. J. Biol. Chem. 275: 13677-82 [PMID:10788486]
  186. Qi XY, Diness JG, Brundel BJ, Zhou XB, Naud P, Wu CT, Huang H, Harada M, Aflaki M and Dobrev D et al.. (2014) Role of small-conductance calcium-activated potassium channels in atrial electrophysiology and fibrillation in the dog. Circulation 129: 430-40 [PMID:24190961]
  187. Rapetti-Mauss R, Lacoste C, Picard V, Guitton C, Lombard E, Loosveld M, Nivaggioni V, Dasilva N, Salgado D and Desvignes JP et al.. (2015) A mutation in the Gardos channel is associated with hereditary xerocytosis. Blood 126: 1273-80 [PMID:26148990]
  188. Rauer H, Lanigan MD, Pennington MW, Aiyar J, Ghanshani S, Cahalan MD, Norton RS and Chandy KG. (2000) Structure-guided transformation of charybdotoxin yields an analog that selectively targets Ca(2+)-activated over voltage-gated K(+) channels. J. Biol. Chem. 275: 1201-8 [PMID:10625664]
  189. Raychaudhuri SK, Wulff H and Raychaudhuri SP. (2016) KCa3.1(-/-) Mice Do Not Develop CIA: Regulatory Role for KCa3.1 in Autoimmune Arthritis. J. Cell. Physiol. 231: 2313-4 [PMID:26910182]
  190. Reich EP, Cui L, Yang L, Pugliese-Sivo C, Golovko A, Petro M, Vassileva G, Chu I, Nomeir AA and Zhang LK et al.. (2005) Blocking ion channel KCNN4 alleviates the symptoms of experimental autoimmune encephalomyelitis in mice. Eur. J. Immunol. 35: 1027-36 [PMID:15770697]
  191. Ro S, Hatton WJ, Koh SD and Horowitz B. (2001) Molecular properties of small-conductance Ca2+-activated K+ channels expressed in murine colonic smooth muscle. Am. J. Physiol. Gastrointest. Liver Physiol. 281: G964-73 [PMID:11557517]
  192. Romano S, Coarelli G, Marcotulli C, Leonardi L, Piccolo F, Spadaro M, Frontali M, Ferraldeschi M, Vulpiani MC and Ponzelli F et al.. (2015) Riluzole in patients with hereditary cerebellar ataxia: a randomised, double-blind, placebo-controlled trial. Lancet Neurol 14: 985-91 [PMID:26321318]
  193. Rufo PA, Merlin D, Riegler M, Ferguson-Maltzman MH, Dickinson BL, Brugnara C, Alper SL and Lencer WI. (1997) The antifungal antibiotic, clotrimazole, inhibits chloride secretion by human intestinal T84 cells via blockade of distinct basolateral K+ conductances. Demonstration of efficacy in intact rabbit colon and in an in vivo mouse model of cholera. J. Clin. Invest. 100: 3111-20 [PMID:9399958]
  194. Safronov BV and Vogel W. (1996) Properties and functions of Na(+)-activated K+ channels in the soma of rat motoneurones. J. Physiol. (Lond.) 497 ( Pt 3): 727-34 [PMID:9003557]
  195. Sanchez M and McManus OB. (1996) Paxilline inhibition of the alpha-subunit of the high-conductance calcium-activated potassium channel. Neuropharmacology 35: 963-8 [PMID:8938726]
  196. Sankaranarayanan A, Raman G, Busch C, Schultz T, Zimin PI, Hoyer J, Köhler R and Wulff H. (2009) Naphtho[1,2-d]thiazol-2-ylamine (SKA-31), a new activator of KCa2 and KCa3.1 potassium channels, potentiates the endothelium-derived hyperpolarizing factor response and lowers blood pressure. Mol. Pharmacol. 75: 281-95 [PMID:18955585]
  197. Santi CM, Ferreira G, Yang B, Gazula VR, Butler A, Wei A, Kaczmarek LK and Salkoff L. (2006) Opposite regulation of Slick and Slack K+ channels by neuromodulators. J. Neurosci. 26: 5059-68 [PMID:16687497]
  198. Santi CM, Martínez-López P, de la Vega-Beltrán JL, Butler A, Alisio A, Darszon A and Salkoff L. (2010) The SLO3 sperm-specific potassium channel plays a vital role in male fertility. FEBS Lett. 584: 1041-6 [PMID:20138882]
  199. Schilling T, Stock C, Schwab A and Eder C. (2004) Functional importance of Ca2+-activated K+ channels for lysophosphatidic acid-induced microglial migration. Eur. J. Neurosci. 19: 1469-74 [PMID:15066143]
  200. Schreiber M and Salkoff L. (1997) A novel calcium-sensing domain in the BK channel. Biophys. J. 73: 1355-63 [PMID:9284303]
  201. Schreiber M, Wei A, Yuan A, Gaut J, Saito M and Salkoff L. (1998) Slo3, a novel pH-sensitive K+ channel from mammalian spermatocytes. J. Biol. Chem. 273: 3509-16 [PMID:9452476]
  202. Schumacher MA, Rivard AF, Bächinger HP and Adelman JP. (2001) Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin. Nature 410: 1120-4 [PMID:11323678]
  203. Shah M and Haylett DG. (2000) The pharmacology of hSK1 Ca2+-activated K+ channels expressed in mammalian cell lines. Br. J. Pharmacol. 129: 627-30 [PMID:10683185]
  204. Shakkottai VG, Chou CH, Oddo S, Sailer CA, Knaus HG, Gutman GA, Barish ME, LaFerla FM and Chandy KG. (2004) Enhanced neuronal excitability in the absence of neurodegeneration induces cerebellar ataxia. J. Clin. Invest. 113: 582-90 [PMID:14966567]
  205. Shakkottai VG, do Carmo Costa M, Dell'Orco JM, Sankaranarayanan A, Wulff H and Paulson HL. (2011) Early changes in cerebellar physiology accompany motor dysfunction in the polyglutamine disease spinocerebellar ataxia type 3. J. Neurosci. 31: 13002-14 [PMID:21900579]
  206. Shakkottai VG, Regaya I, Wulff H, Fajloun Z, Tomita H, Fathallah M, Cahalan MD, Gargus JJ, Sabatier JM and Chandy KG. (2001) Design and characterization of a highly selective peptide inhibitor of the small conductance calcium-activated K+ channel, SkCa2. J. Biol. Chem. 276: 43145-51 [PMID:11527975]
  207. Shi J, Krishnamoorthy G, Yang Y, Hu L, Chaturvedi N, Harilal D, Qin J and Cui J. (2002) Mechanism of magnesium activation of calcium-activated potassium channels. Nature 418: 876-80 [PMID:12192410]
  208. Shmukler BE, Bond CT, Wilhelm S, Bruening-Wright A, Maylie J, Adelman JP and Alper SL. (2001) Structure and complex transcription pattern of the mouse SK1 K(Ca) channel gene, KCNN1. Biochim. Biophys. Acta 1518: 36-46 [PMID:11267657]
  209. Si H, Heyken WT, Wölfle SE, Tysiac M, Schubert R, Grgic I, Vilianovich L, Giebing G, Maier T and Gross V et al.. (2006) Impaired endothelium-derived hyperpolarizing factor-mediated dilations and increased blood pressure in mice deficient of the intermediate-conductance Ca2+-activated K+ channel. Circ. Res. 99: 537-44 [PMID:16873714]
  210. Singh S, Syme CA, Singh AK, Devor DC and Bridges RJ. (2001) Benzimidazolone activators of chloride secretion: potential therapeutics for cystic fibrosis and chronic obstructive pulmonary disease. J. Pharmacol. Exp. Ther. 296: 600-11 [PMID:11160649]
  211. Skibsbye L, Poulet C, Diness JG, Bentzen BH, Yuan L, Kappert U, Matschke K, Wettwer E, Ravens U and Grunnet M et al.. (2014) Small-conductance calcium-activated potassium (SK) channels contribute to action potential repolarization in human atria. Cardiovasc. Res. 103: 156-67 [PMID:24817686]
  212. Srivastava S, Li Z, Ko K, Choudhury P, Albaqumi M, Johnson AK, Yan Y, Backer JM, Unutmaz D and Coetzee WA et al.. (2006) Histidine phosphorylation of the potassium channel KCa3.1 by nucleoside diphosphate kinase B is required for activation of KCa3.1 and CD4 T cells. Mol. Cell 24: 665-75 [PMID:17157250]
  213. Srivastava S, Zhdanova O, Di L, Li Z, Albaqumi M, Wulff H and Skolnik EY. (2008) Protein histidine phosphatase 1 negatively regulates CD4 T cells by inhibiting the K+ channel KCa3.1. Proc. Natl. Acad. Sci. U.S.A. 105: 14442-6 [PMID:18796614]
  214. Stackman RW, Hammond RS, Linardatos E, Gerlach A, Maylie J, Adelman JP and Tzounopoulos T. (2002) Small conductance Ca2+-activated K+ channels modulate synaptic plasticity and memory encoding. J. Neurosci. 22: 10163-71 [PMID:12451117]
  215. Stocker JW, De Franceschi L, McNaughton-Smith GA, Corrocher R, Beuzard Y and Brugnara C. (2003) ICA-17043, a novel Gardos channel blocker, prevents sickled red blood cell dehydration in vitro and in vivo in SAD mice. Blood 101: 2412-8 [PMID:12433690]
  216. Stocker M. (2004) Ca(2+)-activated K+ channels: molecular determinants and function of the SK family. Nat. Rev. Neurosci. 5: 758-70 [PMID:15378036]
  217. Stocker M, Hirzel K, D'hoedt D and Pedarzani P. (2004) Matching molecules to function: neuronal Ca2+-activated K+ channels and afterhyperpolarizations. Toxicon 43: 933-49 [PMID:15208027]
  218. Stocker M, Krause M and Pedarzani P. (1999) An apamin-sensitive Ca2+-activated K+ current in hippocampal pyramidal neurons. Proc. Natl. Acad. Sci. U.S.A. 96: 4662-7 [PMID:10200319]
  219. Stocker M and Pedarzani P. (2000) Differential distribution of three Ca(2+)-activated K(+) channel subunits, SK1, SK2, and SK3, in the adult rat central nervous system. Mol. Cell. Neurosci. 15: 476-93 [PMID:10833304]
  220. Strassmaier T, Bond CT, Sailer CA, Knaus HG, Maylie J and Adelman JP. (2005) A novel isoform of SK2 assembles with other SK subunits in mouse brain. J. Biol. Chem. 280: 21231-6 [PMID:15797870]
  221. Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, Wagner L, Shenmen CM, Schuler GD and Altschul SF et al.. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc. Natl. Acad. Sci. U.S.A. 99: 16899-903 [PMID:12477932]
  222. Strøbaek D, Christophersen P, Holm NR, Moldt P, Ahring PK, Johansen TE and Olesen SP. (1996) Modulation of the Ca(2+)-dependent K+ channel, hslo, by the substituted diphenylurea NS 1608, paxilline and internal Ca2+. Neuropharmacology 35: 903-14 [PMID:8938721]
  223. Strøbaek D, Hougaard C, Johansen TH, Sørensen US, Nielsen EØ, Nielsen KS, Taylor RD, Pedarzani P and Christophersen P. (2006) Inhibitory gating modulation of small conductance Ca2+-activated K+ channels by the synthetic compound (R)-N-(benzimidazol-2-yl)-1,2,3,4-tetrahydro-1-naphtylamine (NS8593) reduces afterhyperpolarizing current in hippocampal CA1 neurons. Mol. Pharmacol. 70: 1771-82 [PMID:16926279]
  224. Strøbaek D, Jørgensen TD, Christophersen P, Ahring PK and Olesen SP. (2000) Pharmacological characterization of small-conductance Ca(2+)-activated K(+) channels stably expressed in HEK 293 cells. Br. J. Pharmacol. 129: 991-9 [PMID:10696100]
  225. Strøbaek D, Teuber L, Jørgensen TD, Ahring PK, Kjaer K, Hansen RS, Olesen SP, Christophersen P and Skaaning-Jensen B. (2004) Activation of human IK and SK Ca2+ -activated K+ channels by NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime). Biochim. Biophys. Acta 1665: 1-5 [PMID:15471565]
  226. Strøbæk D, Brown DT, Jenkins DP, Chen YJ, Coleman N, Ando Y, Chiu P, Jørgensen S, Demnitz J and Wulff H et al.. (2013) NS6180, a new K(Ca) 3.1 channel inhibitor prevents T-cell activation and inflammation in a rat model of inflammatory bowel disease. Br. J. Pharmacol. 168: 432-44 [PMID:22891655]
  227. Syme CA, Gerlach AC, Singh AK and Devor DC. (2000) Pharmacological activation of cloned intermediate- and small-conductance Ca(2+)-activated K(+) channels. Am. J. Physiol., Cell Physiol. 278: C570-81 [PMID:10712246]
  228. Sánchez-Carranza O, Torres-Rodríguez P, Darszon A, Treviño CL and López-González I. (2015) Pharmacology of hSlo3 channels and their contribution in the capacitation-associated hyperpolarization of human sperm. Biochem. Biophys. Res. Commun. 466: 554-9 [PMID:26381170]
  229. Sørensen US, Strøbaek D, Christophersen P, Hougaard C, Jensen ML, Nielsen EØ, Peters D and Teuber L. (2008) Synthesis and structure-activity relationship studies of 2-(N-substituted)-aminobenzimidazoles as potent negative gating modulators ofsmall conductance Ca2+-activated K+ channels. J. Med. Chem. 51: 7625-34 [PMID:18998663]
  230. Tamarina NA, Wang Y, Mariotto L, Kuznetsov A, Bond C, Adelman J and Philipson LH. (2003) Small-conductance calcium-activated K+ channels are expressed in pancreatic islets and regulate glucose responses. Diabetes 52: 2000-6 [PMID:12882916]
  231. Tang QY, Zhang Z, Xia XM and Lingle CJ. (2010) Block of mouse Slo1 and Slo3 K+ channels by CTX, IbTX, TEA, 4-AP and quinidine. Channels (Austin) 4: 22-41 [PMID:19934650]
  232. Taylor MS, Bonev AD, Gross TP, Eckman DM, Brayden JE, Bond CT, Adelman JP and Nelson MT. (2003) Altered expression of small-conductance Ca2+-activated K+ (SK3) channels modulates arterial tone and blood pressure. Circ. Res. 93: 124-31 [PMID:12805243]
  233. Terstappen GC, Pula G, Carignani C, Chen MX and Roncarati R. (2001) Pharmacological characterisation of the human small conductance calcium-activated potassium channel hSK3 reveals sensitivity to tricyclic antidepressants and antipsychotic phenothiazines. Neuropharmacology 40: 772-83 [PMID:11369031]
  234. Tharp DL, Wamhoff BR, Turk JR and Bowles DK. (2006) Upregulation of intermediate-conductance Ca2+-activated K+ channel (IKCa1) mediates phenotypic modulation of coronary smooth muscle. Am. J. Physiol. Heart Circ. Physiol. 291: H2493-503 [PMID:16798818]
  235. Thomson SJ, Hansen A and Sanguinetti MC. (2015) Identification of the Intracellular Na+ Sensor in Slo2.1 Potassium Channels. J. Biol. Chem. 290: 14528-35 [PMID:25903137]
  236. Tomita H, Shakkottai VG, Gutman GA, Sun G, Bunney WE, Cahalan MD, Chandy KG and Gargus JJ. (2003) Novel truncated isoform of SK3 potassium channel is a potent dominant-negative regulator of SK currents: implications in schizophrenia. Mol. Psychiatry 8: 524-35, 460 [PMID:12808432]
  237. Tsai CT, Hsieh CS, Chang SN, Chuang EY, Juang JM, Lin LY, Lai LP, Hwang JJ, Chiang FT and Lin JL. (2015) Next-generation sequencing of nine atrial fibrillation candidate genes identified novel de novo mutations in patients with extreme trait of atrial fibrillation. J. Med. Genet. 52: 28-36 [PMID:25391453]
  238. Tseng-Crank J, Foster CD, Krause JD, Mertz R, Godinot N, DiChiara TJ and Reinhart PH. (1994) Cloning, expression, and distribution of functionally distinct Ca(2+)-activated K+ channel isoforms from human brain. Neuron 13: 1315-30 [PMID:7993625]
  239. Tuteja D, Xu D, Timofeyev V, Lu L, Sharma D, Zhang Z, Xu Y, Nie L, Vázquez AE and Young JN et al.. (2005) Differential expression of small-conductance Ca2+-activated K+ channels SK1, SK2, and SK3 in mouse atrial and ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 289: H2714-23 [PMID:16055520]
  240. Uchino S, Wada H, Honda S, Hirasawa T, Yanai S, Nakamura Y, Ondo Y and Kohsaka S. (2003) Slo2 sodium-activated K+ channels bind to the PDZ domain of PSD-95. Biochem. Biophys. Res. Commun. 310: 1140-7 [PMID:14559234]
  241. Urbahns K, Goldmann S, Krüger J, Horváth E, Schuhmacher J, Grosser R, Hinz V and Mauler F. (2005) IKCa-channel blockers. Part 2: discovery of cyclohexadienes. Bioorg. Med. Chem. Lett. 15: 401-4 [PMID:15603962]
  242. Vaeth M and Feske S. (2018) Ion channelopathies of the immune system. Curr. Opin. Immunol. 52: 39-50 [PMID:29635109]
  243. Valverde MA, Rojas P, Amigo J, Cosmelli D, Orio P, Bahamonde MI, Mann GE, Vergara C and Latorre R. (1999) Acute activation of Maxi-K channels (hSlo) by estradiol binding to the beta subunit. Science 285: 1929-31 [PMID:10489376]
  244. Vandorpe DH, Shmukler BE, Jiang L, Lim B, Maylie J, Adelman JP, de Franceschi L, Cappellini MD, Brugnara C and Alper SL. (1998) cDNA cloning and functional characterization of the mouse Ca2+-gated K+ channel, mIK1. Roles in regulatory volume decrease and erythroid differentiation. J. Biol. Chem. 273: 21542-53 [PMID:9705284]
  245. Villalobos C, Shakkottai VG, Chandy KG, Michelhaugh SK and Andrade R. (2004) SKCa channels mediate the medium but not the slow calcium-activated afterhyperpolarization in cortical neurons. J. Neurosci. 24: 3537-42 [PMID:15071101]
  246. Wang J and Xiang M. (2013) Targeting Potassium Channels Kv1.3 and KCa3.1: Routes to Selective Immunomodulators in Autoimmune Disorder Treatment? Pharmacotherapy 33: 515–528
  247. Waroux O, Massotte L, Alleva L, Graulich A, Thomas E, Liégeois JF, Scuvée-Moreau J and Seutin V. (2005) SK channels control the firing pattern of midbrain dopaminergic neurons in vivo. Eur. J. Neurosci. 22: 3111-21 [PMID:16367777]
  248. Warth R, Hamm K, Bleich M, Kunzelmann K, von Hahn T, Schreiber R, Ullrich E, Mengel M, Trautmann N and Kindle P et al.. (1999) Molecular and functional characterization of the small Ca(2+)-regulated K+ channel (rSK4) of colonic crypts. Pflugers Arch. 438: 437-44 [PMID:10519135]
  249. Weatherall KL, Goodchild SJ, Jane DE and Marrion NV. (2010) Small conductance calcium-activated potassium channels: from structure to function. Prog. Neurobiol. 91: 242-55 [PMID:20359520]
  250. Wei A, Solaro C, Lingle C and Salkoff L. (1994) Calcium sensitivity of BK-type KCa channels determined by a separable domain. Neuron 13: 671-81 [PMID:7917297]
  251. Weiger TM, Hermann A and Levitan IB. (2002) Modulation of calcium-activated potassium channels. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 188: 79-87 [PMID:11919690]
  252. Weiger TM, Holmqvist MH, Levitan IB, Clark FT, Sprague S, Huang WJ, Ge P, Wang C, Lawson D, Jurman ME, Glucksmann MA, Silos-Santiago I, DiStefano PS and Curtis R. (2000) A novel nervous system beta subunit that downregulates human large conductance calcium-dependent potassium channels. J. Neurosci. 20: 3563-70 [PMID:10804197]
  253. Wisden W, Laurie DJ, Monyer H and Seeburg PH. (1992) The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J. Neurosci. 12: 1040-62 [PMID:1312131]
  254. Wittekindt OH, Visan V, Tomita H, Imtiaz F, Gargus JJ, Lehmann-Horn F, Grissmer S and Morris-Rosendahl DJ. (2004) An apamin- and scyllatoxin-insensitive isoform of the human SK3 channel. Mol. Pharmacol. 65: 788-801 [PMID:14978258]
  255. Wolfart J, Neuhoff H, Franz O and Roeper J. (2001) Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons. J. Neurosci. 21: 3443-56 [PMID:11331374]
  256. Wrighton DC, Muench SP and Lippiat JD. (2015) Mechanism of inhibition of mouse Slo3 (KCa 5.1) potassium channels by quinine, quinidine and barium. Br. J. Pharmacol. 172: 4355-63 [PMID:26045093]
  257. Wu Y, Yang Y, Ye S and Jiang Y. (2010) Structure of the gating ring from the human large-conductance Ca(2+)-gated K(+) channel. Nature 466: 393-7 [PMID:20574420]
  258. Wulff H and Castle NA. (2010) Therapeutic potential of KCa3.1 blockers: an overview of recent advances, and promising trends Expert Rev Clin Pharmacol 3: 385–396
  259. Wulff H, Knaus HG, Pennington M and Chandy KG. (2004) K+ channel expression during B cell differentiation: implications for immunomodulation and autoimmunity. J. Immunol. 173: 776-86 [PMID:15240664]
  260. Wulff H, Kolski-Andreaco A, Sankaranarayanan A, Sabatier JM and Shakkottai V. (2007) Modulators of small- and intermediate-conductance calcium-activated potassium channels and their therapeutic indications. Curr. Med. Chem. 14: 1437-57 [PMID:17584055]
  261. Wulff H and Köhler R. (2013) Endothelial small-conductance and intermediate-conductance KCa channels: an update on their pharmacology and usefulness as cardiovascular targets. J. Cardiovasc. Pharmacol. 61: 102-12 [PMID:23107876]
  262. Wulff H, Miller MJ, Hansel W, Grissmer S, Cahalan MD and Chandy KG. (2000) Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: a potential immunosuppressant. Proc. Natl. Acad. Sci. U.S.A. 97: 8151-6 [PMID:10884437]
  263. Xia XM, Fakler B, Rivard A, Wayman G, Johnson-Pais T, Keen JE, Ishii T, Hirschberg B, Bond CT and Lutsenko S et al.. (1998) Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395: 503-7 [PMID:9774106]
  264. Xia XM, Zeng X and Lingle CJ. (2002) Multiple regulatory sites in large-conductance calcium-activated potassium channels. Nature 418: 880-4 [PMID:12192411]
  265. Xu Y, Tuteja D, Zhang Z, Xu D, Zhang Y, Rodriguez J, Nie L, Tuxson HR, Young JN and Glatter KA et al.. (2003) Molecular identification and functional roles of a Ca(2+)-activated K+ channel in human and mouse hearts. J. Biol. Chem. 278: 49085-94 [PMID:13679367]
  266. Yan J and Aldrich RW. (2012) BK potassium channel modulation by leucine-rich repeat-containing proteins. Proc. Natl. Acad. Sci. U.S.A. 109: 7917-22 [PMID:22547800]
  267. Yan J and Aldrich RW. (2010) LRRC26 auxiliary protein allows BK channel activation at resting voltage without calcium. Nature 466: 513-6 [PMID:20613726]
  268. Yang B, Desai R and Kaczmarek LK. (2007) Slack and Slick K(Na) channels regulate the accuracy of timing of auditory neurons. J. Neurosci. 27: 2617-27 [PMID:17344399]
  269. Yang B, Gribkoff VK, Pan J, Damagnez V, Dworetzky SI, Boissard CG, Bhattacharjee A, Yan Y, Sigworth FJ and Kaczmarek LK. (2006) Pharmacological activation and inhibition of Slack (Slo2.2) channels. Neuropharmacology 51: 896-906 [PMID:16876206]
  270. Yao J, Chen X, Li H, Zhou Y, Yao L, Wu G, Chen X, Zhang N, Zhou Z and Xu T et al.. (2005) BmP09, a "long chain" scorpion peptide blocker of BK channels. J. Biol. Chem. 280: 14819-28 [PMID:15695820]
  271. Yao JL, Zhou YF, Yang XJ, Qian XD and Jiang WP. (2015) KCNN3 SNP rs13376333 on Chromosome 1q21 Confers Increased Risk of Atrial Fibrillation. Int Heart J 56: 511-5 [PMID:26370375]
  272. Yi F, Ling TY, Lu T, Wang XL, Li J, Claycomb WC, Shen WK and Lee HC. (2015) Down-regulation of the small conductance calcium-activated potassium channels in diabetic mouse atria. J. Biol. Chem. 290: 7016-26 [PMID:25605734]
  273. Yuan A, Santi CM, Wei A, Wang ZW, Pollak K, Nonet M, Kaczmarek L, Crowder CM and Salkoff L. (2003) The sodium-activated potassium channel is encoded by a member of the Slo gene family. Neuron 37: 765-73 [PMID:12628167]
  274. Yuan P, Leonetti MD, Hsiung Y and MacKinnon R. (2012) Open structure of the Ca2+ gating ring in the high-conductance Ca2+-activated K+ channel. Nature 481: 94-7 [PMID:22139424]
  275. Yuan P, Leonetti MD, Pico AR, Hsiung Y and MacKinnon R. (2010) Structure of the human BK channel Ca2+-activation apparatus at 3.0 A resolution. Science 329: 182-6 [PMID:20508092]
  276. Zeng XH, Yang C, Kim ST, Lingle CJ and Xia XM. (2011) Deletion of the Slo3 gene abolishes alkalization-activated K+ current in mouse spermatozoa. Proc. Natl. Acad. Sci. U.S.A. 108: 5879-84 [PMID:21427226]
  277. Zhang BM, Kohli V, Adachi R, López JA, Udden MM and Sullivan R. (2001) Calmodulin binding to the C-terminus of the small-conductance Ca2+-activated K+ channel hSK1 is affected by alternative splicing. Biochemistry 40: 3189-95 [PMID:11258935]
  278. Zhang X, Zeng X and Lingle CJ. (2006) Slo3 K+ channels: voltage and pH dependence of macroscopic currents. J. Gen. Physiol. 128: 317-36 [PMID:16940555]
  279. Zhang X, Zeng X, Xia XM and Lingle CJ. (2006) pH-regulated Slo3 K+ channels: properties of unitary currents. J. Gen. Physiol. 128: 301-15 [PMID:16940554]
  280. Zhang XD, Timofeyev V, Li N, Myers RE, Zhang DM, Singapuri A, Lau VC, Bond CT, Adelman J and Lieu DK et al.. (2014) Critical roles of a small conductance Ca²⁺-activated K⁺ channel (SK3) in the repolarization process of atrial myocytes. Cardiovasc. Res. 101: 317-25 [PMID:24282291]
  281. Zhang Y, Brown MR, Hyland C, Chen Y, Kronengold J, Fleming MR, Kohn AB, Moroz LL and Kaczmarek LK. (2012) Regulation of neuronal excitability by interaction of fragile X mental retardation protein with slack potassium channels. J. Neurosci. 32: 15318-27 [PMID:23115170]