IUPHAR/BPS Guide to Pharmacology CITE
https://doi.org/10.2218/gtopdb/F68/2019.4

5-HT3 receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database



Nicholas M. Barnes1, Tim G. Hales2, Sarah C. R. Lummis3, Beate Niesler4 and John A. Peters2
  1. University of Birmingham, UK
  2. University of Dundee, UK
  3. University of Cambridge, UK
  4. University of Heidelberg, Germany


Abstract

The 5-HT3 receptor (nomenclature as agreed by the NC-IUPHAR Subcommittee on 5-Hydroxytryptamine (serotonin) receptors [66]) is a ligand-gated ion channel of the Cys-loop family that includes the zinc-activated channels, nicotinic acetylcholine, GABAA and strychnine-sensitive glycine receptors. The receptor exists as a pentamer of 4TM subunits that form an intrinsic cation selective channel [5]. Five human 5-HT3 receptor subunits have been cloned and homo-oligomeric assemblies of 5-HT3A and hetero-oligomeric assemblies of 5-HT3A and 5-HT3B subunits have been characterised in detail. The 5-HT3C (HTR3C, Q8WXA8), 5-HT3D (HTR3D, Q70Z44) and 5-HT3E (HTR3E, A5X5Y0) subunits [83, 122], like the 5-HT3B subunit, do not form functional homomers, but are reported to assemble with the 5-HT3A subunit to influence its functional expression rather than pharmacological profile [124, 63, 157]. 5-HT3A, -C, -D, and -E subunits also interact with the chaperone RIC-3 which predominantly enhances the surface expression of homomeric 5-HT3A receptor [157]. The co-expression of 5-HT3A and 5-HT3C-E subunits has been demonstrated in human colon [82]. A recombinant hetero-oligomeric 5-HT3AB receptor has been reported to contain two copies of the 5-HT3A subunit and three copies of the 5-HT3B subunit in the order B-B-A-B-A [7], but this is inconsistent with recent reports which show at least one A-A interface [96, 150]. The 5-HT3B subunit imparts distinctive biophysical properties upon hetero-oligomeric 5-HT3AB versus homo-oligomeric 5-HT3A recombinant receptors [32, 41, 56, 85, 139, 129, 79], influences the potency of channel blockers, but generally has only a modest effect upon the apparent affinity of agonists, or the affinity of antagonists ([17], but see [41, 30, 35]) which may be explained by the orthosteric binding site residing at an interface formed between 5-HT3A subunits [96, 150]. However, 5-HT3A and 5-HT3AB receptors differ in their allosteric regulation by some general anaesthetic agents, small alcohols and indoles [138, 135, 71]. The potential diversity of 5-HT3 receptors is increased by alternative splicing of the genes HTR3A and E [64, 19, 124, 123, 120]. In addition, the use of tissue-specific promoters driving expression from different transcriptional start sites has been reported for the HTR3A, HTR3B, HTR3D and HTR3E genes, which could result in 5-HT3 subunits harbouring different N-termini [152, 79, 120]. To date, inclusion of the 5-HT3A subunit appears imperative for 5-HT3 receptor function.

Contents

This is a citation summary for 5-HT3 receptors in the Guide to Pharmacology database (GtoPdb). It exists purely as an adjunct to the database to facilitate the recognition of citations to and from the database by citation analyzers. Readers will almost certainly want to visit the relevant sections of the database which are given here under database links.

GtoPdb is an expert-driven guide to pharmacological targets and the substances that act on them. GtoPdb is a reference work which is most usefully represented as an on-line database. As in any publication this work should be appropriately cited, and the papers it cites should also be recognized. This document provides a citation for the relevant parts of the database, and also provides a reference list for the research cited by those parts.

Please note that the database version for the citations given in GtoPdb are to the most recent preceding version in which the family or its subfamilies and targets were substantially changed. The links below are to the current version. If you need to consult the cited version, rather than the most recent version, please contact the GtoPdb curators.

Database links

5-HT3 receptors
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=68
Introduction to 5-HT3 receptors
http://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=68
    Channels and Subunits
        Complexes
            5-HT3AB
            http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=378
            5-HT3A
            http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=379
        Subunits
            5-HT3A
            http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=373
            5-HT3B
            http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=374
            5-HT3C
            http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=375
            5-HT3D
            http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=376
            5-HT3E
            http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=377

References

  1. Abi-Dargham A, Laruelle M, Wong DT, Robertson DW, Weinberger DR and Kleinman JE. (1993) Pharmacological and regional characterization of [3H]LY278584 binding sites in human brain. J. Neurochem. 60: 730-7 [PMID:8419547]
  2. Akuzawa S, Miyake A, Miyata K and Fukutomi H. (1996) Comparison of [3H]YM060 binding to native and cloned rat 5-HT3 receptors. Eur. J. Pharmacol. 296: 227-30 [PMID:8838461]
  3. Bachy A, Héaulme M, Giudice A, Michaud JC, Lefevre IA, Souilhac J, Manara L, Emerit MB, Gozlan H and Hamon M et al.. (1993) SR 57227A: a potent and selective agonist at central and peripheral 5-HT3 receptors in vitro and in vivo. Eur. J. Pharmacol. 237: 299-309 [PMID:7689975]
  4. Bang-Andersen B, Ruhland T, Jørgensen M, Smith G, Frederiksen K, Jensen KG, Zhong H, Nielsen SM, Hogg S and Mørk A et al.. (2011) Discovery of 1-[2-(2,4-dimethylphenylsulfanyl)phenyl]piperazine (Lu AA21004): a novel multimodal compound for the treatment of major depressive disorder. J. Med. Chem. 54: 3206-21 [PMID:21486038]
  5. Barnes NM, Hales TG, Lummis SC and Peters JA. (2009) The 5-HT3 receptor--the relationship between structure and function. Neuropharmacology 56: 273-84 [PMID:18761359]
  6. Barnes NM and Sharp T. (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38: 1083-152 [PMID:10462127]
  7. Barrera NP, Herbert P, Henderson RM, Martin IL and Edwardson JM. (2005) Atomic force microscopy reveals the stoichiometry and subunit arrangement of 5-HT3 receptors. Proc. Natl. Acad. Sci. U.S.A. 102: 12595-600 [PMID:16116092]
  8. Belelli D, Balcarek JM, Hope AG, Peters JA, Lambert JJ and Blackburn TP. (1995) Cloning and functional expression of a human 5-hydroxytryptamine type 3AS receptor subunit. Mol. Pharmacol. 48: 1054-62 [PMID:8848005]
  9. Bhatnagar S, Sun LM, Raber J, Maren S, Julius D and Dallman MF. (2004) Changes in anxiety-related behaviors and hypothalamic-pituitary-adrenal activity in mice lacking the 5-HT-3A receptor. Physiol. Behav. 81: 545-55 [PMID:15178147]
  10. Bhattacharya A, Dang H, Zhu QM, Schnegelsberg B, Rozengurt N, Cain G, Prantil R, Vorp DA, Guy N and Julius D et al.. (2004) Uropathic observations in mice expressing a constitutively active point mutation in the 5-HT3A receptor subunit. J. Neurosci. 24: 5537-48 [PMID:15201326]
  11. Boeijinga PH, Galvan M, Baron BM, Dudley MW, Siegel BW and Slone AL. (1992) Characterization of the novel 5-HT3 antagonists MDL 73147EF (dolasetron mesilate) and MDL 74156 in NG108-15 neuroblastoma x glioma cells. Eur. J. Pharmacol. 219: 9-13 [PMID:1397053]
  12. Boess FG, Beroukhim R and Martin IL. (1995) Ultrastructure of the 5-hydroxytryptamine3 receptor. J. Neurochem. 64: 1401-5 [PMID:7861173]
  13. Bonhaus DW, Stefanich E, Loury DN, Hsu SA, Eglen RM and Wong EH. (1995) Allosteric interactions among agonists and antagonists at 5-hydroxytryptamine3 receptors. J. Neurochem. 65: 104-10 [PMID:7790853]
  14. Boyd GW, Low P, Dunlop JI, Robertson LA, Vardy A, Lambert JJ, Peters JA and Connolly CN. (2002) Assembly and cell surface expression of homomeric and heteromeric 5-HT3 receptors: the role of oligomerization and chaperone proteins. Mol. Cell. Neurosci. 21: 38-50 [PMID:12359150]
  15. Bradley PB, Engel G, Feniuk W, Fozard JR, Humphrey PP, Middlemiss DN, Mylecharane EJ, Richardson BP and Saxena PR. (1986) Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology 25: 563-76 [PMID:2875415]
  16. Brady CA, Dover TJ, Massoura AN, Princivalle AP, Hope AG and Barnes NM. (2007) Identification of 5-HT3A and 5-HT3B receptor subunits in human hippocampus. Neuropharmacology 52: 1284-90 [PMID:17327132]
  17. Brady CA, Stanford IM, Ali I, Lin L, Williams JM, Dubin AE, Hope AG and Barnes NM. (2001) Pharmacological comparison of human homomeric 5-HT3A receptors versus heteromeric 5-HT3A/3B receptors. Neuropharmacology 41: 282-4 [PMID:11489465]
  18. Brown AM, Hope AG, Lambert JJ and Peters JA. (1998) Ion permeation and conduction in a human recombinant 5-HT3 receptor subunit (h5-HT3A). J. Physiol. (Lond.) 507 ( Pt 3): 653-65 [PMID:9508827]
  19. Brüss M, Barann M, Hayer-Zillgen M, Eucker T, Göthert M and Bönisch H. (2000) Modified 5-HT3A receptor function by co-expression of alternatively spliced human 5-HT3A receptor isoforms. Naunyn Schmiedebergs Arch. Pharmacol. 362: 392-401 [PMID:11111833]
  20. Brüss M, Eucker T, Göthert M and Bönisch H. (2000) Exon-intron organization of the human 5-HT3A receptor gene. Neuropharmacology 39: 308-15 [PMID:10670426]
  21. Brüss M, Molderings GJ, Bönisch H and Göthert M. (1999) Pharmacological differences and similarities between the native mouse 5-HT3 receptor in N1E-115 cells and a cloned short splice variant of the mouse 5-HT3 receptor expressed in HEK 293 cells. Naunyn Schmiedebergs Arch. Pharmacol. 360: 225-33 [PMID:10543422]
  22. Bufton KE, Steward LJ, Barber PC and Barnes NM. (1993) Distribution and characterization of the [3H]granisetron-labelled 5-HT3 receptor in the human forebrain. Neuropharmacology 32: 1325-31 [PMID:8152523]
  23. Butler A, Elswood CJ, Burridge J, Ireland SJ, Bunce KT, Kilpatrick GJ and Tyers MB. (1990) The pharmacological characterization of 5-HT3 receptors in three isolated preparations derived from guinea-pig tissues. Br. J. Pharmacol. 101: 591-8 [PMID:2076479]
  24. Butler A, Hill JM, Ireland SJ, Jordan CC and Tyers MB. (1988) Pharmacological properties of GR38032F, a novel antagonist at 5-HT3 receptors. Br. J. Pharmacol. 94: 397-412 [PMID:2969267]
  25. Chameau P and van Hooft JA. (2006) Serotonin 5-HT(3) receptors in the central nervous system. Cell Tissue Res. 326: 573-81 [PMID:16826372]
  26. Clayton NM, Sargent R, Butler A, Gale J, Maxwell MP, Hunt AA, Barrett VJ, Cambridge D, Bountra C and Humphrey PP. (1999) The pharmacological properties of the novel selective 5-HT3 receptor antagonist, alosetron, and its effects on normal and perturbed small intestinal transit in the fasted rat. Neurogastroenterol. Motil. 11: 207-17 [PMID:10354345]
  27. Costall B and Naylor RJ. (2004) 5-HT3 receptors. Curr Drug Targets CNS Neurol Disord 3: 27-37 [PMID:14965242]
  28. Dang H, England PM, Farivar SS, Dougherty DA and Lester HA. (2000) Probing the role of a conserved M1 proline residue in 5-hydroxytryptamine(3) receptor gating. Mol. Pharmacol. 57: 1114-22 [PMID:10825381]
  29. Das P, Bell-Horner CL, Machu TK and Dillon GH. (2003) The GABA(A) receptor antagonist picrotoxin inhibits 5-hydroxytryptamine type 3A receptors. Neuropharmacology 44: 431-8 [PMID:12646280]
  30. Das P and Dillon GH. (2003) The 5-HT3B subunit confers reduced sensitivity to picrotoxin when co-expressed with the 5-HT3A receptor. Brain Res. Mol. Brain Res. 119: 207-12 [PMID:14625088]
  31. Das P and Dillon GH. (2005) Molecular determinants of picrotoxin inhibition of 5-hydroxytryptamine type 3 receptors. J. Pharmacol. Exp. Ther. 314: 320-8 [PMID:15814570]
  32. Davies PA, Pistis M, Hanna MC, Peters JA, Lambert JJ, Hales TG and Kirkness EF. (1999) The 5-HT3B subunit is a major determinant of serotonin-receptor function. Nature 397: 359-63 [PMID:9950429]
  33. Davies PA, Wang W, Hales TG and Kirkness EF. (2003) A novel class of ligand-gated ion channel is activated by Zn2+. J. Biol. Chem. 278: 712-7 [PMID:12381728]
  34. Deeb TZ, Carland JE, Cooper MA, Livesey MR, Lambert JJ, Peters JA and Hales TG. (2007) Dynamic modification of a mutant cytoplasmic cysteine residue modulates the conductance of the human 5-HT3A receptor. J. Biol. Chem. 282: 6172-82 [PMID:17200121]
  35. Deeb TZ, Sharp D and Hales TG. (2009) Direct subunit-dependent multimodal 5-hydroxytryptamine3 receptor antagonism by methadone. Mol. Pharmacol. 75: 908-17 [PMID:19131665]
  36. Derkach V, Surprenant A and North RA. (1989) 5-HT3 receptors are membrane ion channels. Nature 339: 706-9 [PMID:2472553]
  37. Doucet E, Latrémolière A, Darmon M, Hamon M and Emerit MB. (2007) Immunolabelling of the 5-HT 3B receptor subunit in the central and peripheral nervous systems in rodents. Eur. J. Neurosci. 26: 355-66 [PMID:17650111]
  38. Doucet E, Miquel MC, Nosjean A, Vergé D, Hamon M and Emerit MB. (2000) Immunolabeling of the rat central nervous system with antibodies partially selective of the short form of the 5-HT3 receptor. Neuroscience 95: 881-92 [PMID:10670455]
  39. Downie DL, Hope AG, Belelli D, Lambert JJ, Peters JA, Bentley KR, Steward LJ, Chen CY and Barnes NM. (1995) The interaction of trichloroethanol with murine recombinant 5-HT3 receptors. Br. J. Pharmacol. 114: 1641-51 [PMID:7541281]
  40. Downie DL, Hope AG, Lambert JJ, Peters JA, Blackburn TP and Jones BJ. (1994) Pharmacological characterization of the apparent splice variants of the murine 5-HT3 R-A subunit expressed in Xenopus laevis oocytes. Neuropharmacology 33: 473-82 [PMID:7984286]
  41. Dubin AE, Huvar R, D'Andrea MR, Pyati J, Zhu JY, Joy KC, Wilson SJ, Galindo JE, Glass CA and Luo L et al.. (1999) The pharmacological and functional characteristics of the serotonin 5-HT(3A) receptor are specifically modified by a 5-HT(3B) receptor subunit. J. Biol. Chem. 274: 30799-810 [PMID:10521471]
  42. Edwards E, Hampton E, Ashby CR, Zhang J and Wang RY. (1996) 5-HT3-like receptors in the rat medial prefrontal cortex: further pharmacological characterization. Brain Res. 733: 21-30 [PMID:8891244]
  43. Fasching PA, Kollmannsberger B, Strissel PL, Niesler B, Engel J, Kreis H, Lux MP, Weihbrecht S, Lausen B, Bani MR, Beckmann MW and Strick R. (2008) Polymorphisms in the novel serotonin receptor subunit gene HTR3C show different risks for acute chemotherapy-induced vomiting after anthracycline chemotherapy. J. Cancer Res. Clin. Oncol. 134: 1079-86 [PMID:18389280]
  44. Fink KB and Göthert M. (2007) 5-HT receptor regulation of neurotransmitter release. Pharmacol. Rev. 59: 360-417 [PMID:18160701]
  45. Fonseca MI, Ni YG, Dunning DD and Miledi R. (2001) Distribution of serotonin 2A, 2C and 3 receptor mRNA in spinal cord and medulla oblongata. Brain Res. Mol. Brain Res. 89: 11-9 [PMID:11311971]
  46. Fozard JR. (1984) MDL 72222: a potent and highly selective antagonist at neuronal 5-hydroxytryptamine receptors. Naunyn Schmiedebergs Arch. Pharmacol. 326: 36-44 [PMID:6472484]
  47. Frank B, Niesler B, Nöthen MM, Neidt H, Propping P, Bondy B, Rietschel M, Maier W, Albus M and Rappold G. (2004) Investigation of the human serotonin receptor gene HTR3B in bipolar affective and schizophrenic patients. Am. J. Med. Genet. B Neuropsychiatr. Genet. 131B: 1-5 [PMID:15389765]
  48. Férézou I, Cauli B, Hill EL, Rossier J, Hamel E and Lambolez B. (2002) 5-HT3 receptors mediate serotonergic fast synaptic excitation of neocortical vasoactive intestinal peptide/cholecystokinin interneurons. J. Neurosci. 22: 7389-97 [PMID:12196560]
  49. GADDUM JH and PICARELLI ZP. (1957) Two kinds of tryptamine receptor. Br J Pharmacol Chemother 12: 323-8 [PMID:13460238]
  50. Geurts FJ, De Schutter E and Timmermans JP. (2002) Localization of 5-HT2A, 5-HT3, 5-HT5A and 5-HT7 receptor-like immunoreactivity in the rat cerebellum. J. Chem. Neuroanat. 24: 65-74 [PMID:12084412]
  51. Gill CH, Peters JA and Lambert JJ. (1995) An electrophysiological investigation of the properties of a murine recombinant 5-HT3 receptor stably expressed in HEK 293 cells. Br. J. Pharmacol. 114: 1211-21 [PMID:7620711]
  52. Glatzle J, Sternini C, Robin C, Zittel TT, Wong H, Reeve Jr JR and Raybould HE. (2002) Expression of 5-HT3 receptors in the rat gastrointestinal tract. Gastroenterology 123: 217-26 [PMID:12105850]
  53. Green T, Stauffer KA and Lummis SC. (1995) Expression of recombinant homo-oligomeric 5-hydroxytryptamine3 receptors provides new insights into their maturation and structure. J. Biol. Chem. 270: 6056-61 [PMID:7890738]
  54. Gunthorpe MJ and Lummis SC. (1999) Diltiazem causes open channel block of recombinant 5-HT3 receptors. J. Physiol. (Lond.) 519 Pt 3: 713-22 [PMID:10457085]
  55. Hales TG, Dunlop JI, Deeb TZ, Carland JE, Kelley SP, Lambert JJ and Peters JA. (2006) Common determinants of single channel conductance within the large cytoplasmic loop of 5-hydroxytryptamine type 3 and alpha4beta2 nicotinic acetylcholine receptors. J. Biol. Chem. 281: 8062-71 [PMID:16407231]
  56. Hanna MC, Davies PA, Hales TG and Kirkness EF. (2000) Evidence for expression of heteromeric serotonin 5-HT(3) receptors in rodents. J. Neurochem. 75: 240-7 [PMID:10854267]
  57. Hapfelmeier G, Tredt C, Haseneder R, Zieglgänsberger W, Eisensamer B, Rupprecht R and Rammes G. (2003) Co-expression of the 5-HT3B serotonin receptor subunit alters the biophysics of the 5-HT3 receptor. Biophys. J. 84: 1720-33 [PMID:12609874]
  58. Hargreaves AC, Lummis SC and Taylor CW. (1994) Ca2+ permeability of cloned and native 5-hydroxytryptamine type 3 receptors. Mol. Pharmacol. 46: 1120-8 [PMID:7808432]
  59. Hassaine G, Deluz C, Grasso L, Wyss R, Tol MB, Hovius R, Graff A, Stahlberg H, Tomizaki T and Desmyter A et al.. (2014) X-ray structure of the mouse serotonin 5-HT3 receptor. Nature 512: 276-81 [PMID:25119048]
  60. Hayrapetyan V, Jenschke M, Dillon GH and Machu TK. (2005) Co-expression of the 5-HT(3B) subunit with the 5-HT(3A) receptor reduces alcohol sensitivity. Brain Res. Mol. Brain Res. 142: 146-50 [PMID:16257471]
  61. Hewlett WA, Trivedi BL, Zhang ZJ, de Paulis T, Schmidt DE, Lovinger DM, Ansari MS and Ebert MH. (1999) Characterization of (S)-des-4-amino-3-[125I]iodozacopride ([125I]DAIZAC), a selective high-affinity radioligand for 5-hydroxytryptamine3 receptors. J. Pharmacol. Exp. Ther. 288: 221-31 [PMID:9862774]
  62. Hirata T, Keto Y, Funatsu T, Akuzawa S and Sasamata M. (2007) Evaluation of the pharmacological profile of ramosetron, a novel therapeutic agent for irritable bowel syndrome. J. Pharmacol. Sci. 104: 263-73 [PMID:17652911]
  63. Holbrook JD, Gill CH, Zebda N, Spencer JP, Leyland R, Rance KH, Trinh H, Balmer G, Kelly FM and Yusaf SP et al.. (2009) Characterisation of 5-HT3C, 5-HT3D and 5-HT3E receptor subunits: evolution, distribution and function. J. Neurochem. 108: 384-96 [PMID:19012743]
  64. Hope AG, Downie DL, Sutherland L, Lambert JJ, Peters JA and Burchell B. (1993) Cloning and functional expression of an apparent splice variant of the murine 5-HT3 receptor A subunit. Eur. J. Pharmacol. 245: 187-92 [PMID:7683998]
  65. Hope AG, Peters JA, Brown AM, Lambert JJ and Blackburn TP. (1996) Characterization of a human 5-hydroxytryptamine3 receptor type A (h5-HT3R-AS) subunit stably expressed in HEK 293 cells. Br. J. Pharmacol. 118: 1237-45 [PMID:8818349]
  66. Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR and Humphrey PP. (1994) International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol. Rev. 46: 157-203 [PMID:7938165]
  67. Hoyer D and Martin G. (1997) 5-HT receptor classification and nomenclature: towards a harmonization with the human genome. Neuropharmacology 36: 419-28 [PMID:9225265]
  68. Hu XQ, Hayrapetyan V, Gadhiya JJ, Rhubottom HE, Lovinger DM and Machu TK. (2006) Mutations of L293 in transmembrane two of the mouse 5-hydroxytryptamine3A receptor alter gating and alcohol modulatory actions. Br. J. Pharmacol. 148: 88-101 [PMID:16520747]
  69. Hu XQ and Lovinger DM. (2005) Role of aspartate 298 in mouse 5-HT3A receptor gating and modulation by extracellular Ca2+. J. Physiol. (Lond.) 568: 381-96 [PMID:16096341]
  70. Hu XQ and Peoples RW. (2008) Arginine 246 of the pretransmembrane domain 1 region alters 2,2,2-trichloroethanol action in the 5-hydroxytryptamine3A receptor. J. Pharmacol. Exp. Ther. 324: 1011-8 [PMID:18094321]
  71. Hu XQ and Peoples RW. (2008) The 5-HT3B subunit confers spontaneous channel opening and altered ligand properties of the 5-HT3 receptor. J. Biol. Chem. 283: 6826-31 [PMID:18187416]
  72. Huang J, Spier AD and Pickel VM. (2004) 5-HT3A receptor subunits in the rat medial nucleus of the solitary tract: subcellular distribution and relation to the serotonin transporter. Brain Res. 1028: 156-69 [PMID:15527741]
  73. Hubbard PC and Lummis SC. (2000) Zn(2+) enhancement of the recombinant 5-HT(3) receptor is modulated by divalent cations. Eur. J. Pharmacol. 394: 189-97 [PMID:10771284]
  74. Hubbard PC, Thompson AJ and Lummis SC. (2000) Functional differences between splice variants of the murine 5-HT(3A) receptor: possible role for phosphorylation. Brain Res. Mol. Brain Res. 81: 101-8 [PMID:11000482]
  75. Hussy N, Lukas W and Jones KA. (1994) Functional properties of a cloned 5-hydroxytryptamine ionotropic receptor subunit: comparison with native mouse receptors. J. Physiol. (Lond.) 481 ( Pt 2): 311-23 [PMID:7537814]
  76. Iidaka T, Ozaki N, Matsumoto A, Nogawa J, Kinoshita Y, Suzuki T, Iwata N, Yamamoto Y, Okada T and Sadato N. (2005) A variant C178T in the regulatory region of the serotonin receptor gene HTR3A modulates neural activation in the human amygdala. J. Neurosci. 25: 6460-6 [PMID:16000636]
  77. Isenberg KE, Ukhun IA, Holstad SG, Jafri S, Uchida U, Zorumski CF and Yang J. (1993) Partial cDNA cloning and NGF regulation of a rat 5-HT3 receptor subunit. Neuroreport 5: 121-4 [PMID:7509203]
  78. Ito H, Kiso T, Miyata K, Kamato T, Yuki H, Akuzawa S, Nagakura Y, Yamano M, Suzuki M and Naitoh Y et al.. (2000) Pharmacological profile of YM-31636, a novel 5-HT3 receptor agonist, in vitro. Eur. J. Pharmacol. 409: 195-201 [PMID:11104834]
  79. Jensen AA, Davies PA, Bräuner-Osborne H and Krzywkowski K. (2008) 3B but which 3B and that's just one of the questions: the heterogeneity of human 5-HT3 receptors. Trends Pharmacol. Sci. 29: 437-44 [PMID:18597859]
  80. Jensen TN, Nielsen J, Frederiksen K and Ebert B. (2006) Molecular cloning and pharmacological characterization of serotonin 5-HT(3A) receptor subtype in dog. Eur. J. Pharmacol. 538: 23-31 [PMID:16647053]
  81. Kapeller J, Houghton LA, Mönnikes H, Walstab J, Möller D, Bönisch H, Burwinkel B, Autschbach F, Funke B and Lasitschka F et al.. (2008) First evidence for an association of a functional variant in the microRNA-510 target site of the serotonin receptor-type 3E gene with diarrhea predominant irritable bowel syndrome. Hum. Mol. Genet. 17: 2967-77 [PMID:18614545]
  82. Kapeller J, Möller D, Lasitschka F, Autschbach F, Hovius R, Rappold G, Brüss M, Gershon MD and Niesler B. (2011) Serotonin receptor diversity in the human colon: Expression of serotonin type 3 receptor subunits 5-HT3C, 5-HT3D, and 5-HT3E. J. Comp. Neurol. 519: 420-32 [PMID:21192076]
  83. Karnovsky AM, Gotow LF, McKinley DD, Piechan JL, Ruble CL, Mills CJ, Schellin KA, Slightom JL, Fitzgerald LR and Benjamin CW et al.. (2003) A cluster of novel serotonin receptor 3-like genes on human chromosome 3. Gene 319: 137-48 [PMID:14597179]
  84. Kayser V, Elfassi IE, Aubel B, Melfort M, Julius D, Gingrich JA, Hamon M and Bourgoin S. (2007) Mechanical, thermal and formalin-induced nociception is differentially altered in 5-HT1A-/-, 5-HT1B-/-, 5-HT2A-/-, 5-HT3A-/- and 5-HTT-/- knock-out male mice. Pain 130: 235-48 [PMID:17250964]
  85. Kelley SP, Dunlop JI, Kirkness EF, Lambert JJ and Peters JA. (2003) A cytoplasmic region determines single-channel conductance in 5-HT3 receptors. Nature 424: 321-4 [PMID:12867984]
  86. Kooyman AR, van Hooft JA and Vijverberg HP. (1993) 5-Hydroxyindole slows desensitization of the 5-HT3 receptor-mediated ion current in N1E-115 neuroblastoma cells. Br. J. Pharmacol. 108: 287-9 [PMID:7680589]
  87. Krzywkowski K, Davies PA, Feinberg-Zadek PL, Bräuner-Osborne H and Jensen AA. (2008) High-frequency HTR3B variant associated with major depression dramatically augments the signaling of the human 5-HT3AB receptor. Proc. Natl. Acad. Sci. U.S.A. 105: 722-7 [PMID:18184810]
  88. Krzywkowski K, Davies PA, Irving AJ, Bräuner-Osborne H and Jensen AA. (2008) Characterization of the effects of four HTR3B polymorphisms on human 5-HT3AB receptor expression and signalling. Pharmacogenet. Genomics 18: 1027-40 [PMID:19008750]
  89. Krzywkowski K, Jensen AA, Connolly CN and Bräuner-Osborne H. (2007) Naturally occurring variations in the human 5-HT3A gene profoundly impact 5-HT3 receptor function and expression. Pharmacogenet. Genomics 17: 255-66 [PMID:17496724]
  90. Lambert JJ, Peters JA, Hales TG and Dempster J. (1989) The properties of 5-HT3 receptors in clonal cell lines studied by patch-clamp techniques. Br. J. Pharmacol. 97: 27-40 [PMID:2720311]
  91. Lankiewicz S, Lobitz N, Wetzel CH, Rupprecht R, Gisselmann G and Hatt H. (1998) Molecular cloning, functional expression, and pharmacological characterization of 5-hydroxytryptamine3 receptor cDNA and its splice variants from guinea pig. Mol. Pharmacol. 53: 202-12 [PMID:9463477]
  92. Lee BH, Choi SH, Pyo MK, Shin TJ, Hwang SH, Kim BR, Lee JH, Rhim H, Kim HC and Nah SY. (2009) A role for the Val291 residue within the transmembrane domain 2 in diltiazem- and TMB-8 [3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester]-mediated 5-hydroxytryptamine type 3A receptor regulations. Biol. Pharm. Bull. 32: 861-7 [PMID:19420755]
  93. Lester HA, Dibas MI, Dahan DS, Leite JF and Dougherty DA. (2004) Cys-loop receptors: new twists and turns. Trends Neurosci. 27: 329-36 [PMID:15165737]
  94. Liu MT, Rayport S, Jiang Y, Murphy DL and Gershon MD. (2002) Expression and function of 5-HT3 receptors in the enteric neurons of mice lacking the serotonin transporter. Am. J. Physiol. Gastrointest. Liver Physiol. 283: G1398-411 [PMID:12388212]
  95. Livesey MR, Cooper MA, Deeb TZ, Carland JE, Kozuska J, Hales TG, Lambert JJ and Peters JA. (2008) Structural determinants of Ca2+ permeability and conduction in the human 5-hydroxytryptamine type 3A receptor. J. Biol. Chem. 283: 19301-13 [PMID:18474595]
  96. Lochner M and Lummis SC. (2010) Agonists and antagonists bind to an A-A interface in the heteromeric 5-HT3AB receptor. Biophys. J. 98: 1494-502 [PMID:20409468]
  97. Lummis SC, Thompson AJ, Bencherif M and Lester HA. (2011) Varenicline is a potent agonist of the human 5-hydroxytryptamine3 receptor. J. Pharmacol. Exp. Ther. 339: 125-31 [PMID:21775477]
  98. Lundeberg L, El-Nour H, Mohabbati S, Morales M, Azmitia E and Nordlind K. (2002) Expression of serotonin receptors in allergic contact eczematous human skin. Arch. Dermatol. Res. 294: 393-8 [PMID:12522576]
  99. Mair ID, Lambert JJ, Yang J, Dempster J and Peters JA. (1998) Pharmacological characterization of a rat 5-hydroxytryptamine type3 receptor subunit (r5-HT3A(b)) expressed in Xenopus laevis oocytes. Br. J. Pharmacol. 124: 1667-74 [PMID:9756382]
  100. Marazziti D, Betti L, Giannaccini G, Rossi A, Masala I, Baroni S, Cassano GB and Lucacchini A. (2001) Distribution of [3H]GR65630 binding in human brain postmortem. Neurochem. Res. 26: 187-90 [PMID:11495540]
  101. Maricq AV, Peterson AS, Brake AJ, Myers RM and Julius D. (1991) Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science 254: 432-7 [PMID:1718042]
  102. Mazurov AA, Speake JD and Yohannes D. (2011) Discovery and development of α7 nicotinic acetylcholine receptor modulators. J. Med. Chem. 54: 7943-61 [PMID:21919481]
  103. Meineke C, Tzvetkov MV, Bokelmann K, Oetjen E, Hirsch-Ernst K, Kaiser R and Brockmöller J. (2008) Functional characterization of a -100_-102delAAG deletion-insertion polymorphism in the promoter region of the HTR3B gene. Pharmacogenet. Genomics 18: 219-30 [PMID:18300944]
  104. Michel K, Zeller F, Langer R, Nekarda H, Kruger D, Dover TJ, Brady CA, Barnes NM and Schemann M. (2005) Serotonin excites neurons in the human submucous plexus via 5-HT3 receptors. Gastroenterology 128: 1317-26 [PMID:15887114]
  105. Miquel MC, Emerit MB, Gingrich JA, Nosjean A, Hamon M and el Mestikawy S. (1995) Developmental changes in the differential expression of two serotonin 5-HT3 receptor splice variants in the rat. J. Neurochem. 65: 475-83 [PMID:7616200]
  106. Miquel MC, Emerit MB, Nosjean A, Simon A, Rumajogee P, Brisorgueil MJ, Doucet E, Hamon M and Vergé D. (2002) Differential subcellular localization of the 5-HT3-As receptor subunit in the rat central nervous system. Eur. J. Neurosci. 15: 449-57 [PMID:11876772]
  107. Miyake A, Mochizuki S, Takemoto Y and Akuzawa S. (1995) Molecular cloning of human 5-hydroxytryptamine3 receptor: heterogeneity in distribution and function among species. Mol. Pharmacol. 48: 407-16 [PMID:7565620]
  108. Mochizuki S, Miyake A and Furuichi K. (1999) Identification of a domain affecting agonist potency of meta-chlorophenylbiguanide in 5-HT3 receptors. Eur. J. Pharmacol. 369: 125-32 [PMID:10204690]
  109. Mochizuki S, Miyake A and Furuichi K. (1999) Ion permeation properties of a cloned human 5-HT3 receptor transiently expressed in HEK 293 cells. Amino Acids 17: 243-55 [PMID:10582123]
  110. Mochizuki S, Watanabe T, Miyake A, Saito M and Furuichi K. (2000) Cloning, expression, and characterization of ferret 5-HT(3) receptor subunit. Eur. J. Pharmacol. 399: 97-106 [PMID:10884508]
  111. Monk SA, Desai K, Brady CA, Williams JM, Lin L, Princivalle A, Hope AG and Barnes NM. (2001) Generation of a selective 5-HT3B subunit-recognising polyclonal antibody; identification of immunoreactive cells in rat hippocampus. Neuropharmacology 41: 1013-6 [PMID:11747906]
  112. Morain P, Abraham C, Portevin B and De Nanteuil G. (1994) Biguanide derivatives: agonist pharmacology at 5-hydroxytryptamine type 3 receptors in vitro. Mol. Pharmacol. 46: 732-42 [PMID:7969053]
  113. Morales M, Battenberg E and Bloom FE. (1998) Distribution of neurons expressing immunoreactivity for the 5HT3 receptor subtype in the rat brain and spinal cord. J. Comp. Neurol. 402: 385-401 [PMID:9853906]
  114. Morales M and Wang SD. (2002) Differential composition of 5-hydroxytryptamine3 receptors synthesized in the rat CNS and peripheral nervous system. J. Neurosci. 22: 6732-41 [PMID:12151552]
  115. Moura Barbosa AJ, De Rienzo F, Ramos MJ and Menziani MC. (2010) Computational analysis of ligand recognition sites of homo- and heteropentameric 5-HT3 receptors. Eur J Med Chem 45: 4746-60 [PMID:20724042]
  116. Newberry NR, Cheshire SH and Gilbert MJ. (1991) Evidence that the 5-HT3 receptors of the rat, mouse and guinea-pig superior cervical ganglion may be different. Br. J. Pharmacol. 102: 615-20 [PMID:1364827]
  117. Nichols RA and Mollard P. (1996) Direct observation of serotonin 5-HT3 receptor-induced increases in calcium levels in individual brain nerve terminals. J. Neurochem. 67: 581-92 [PMID:8764583]
  118. Niemeyer MI and Lummis SC. (1998) Different efficacy of specific agonists at 5-HT3 receptor splice variants: the role of the extra six amino acid segment. Br. J. Pharmacol. 123: 661-6 [PMID:9517385]
  119. Niemeyer MI and Lummis SC. (2001) The role of the agonist binding site in Ca(2+) inhibition of the recombinant 5-HT(3A) receptor. Eur. J. Pharmacol. 428: 153-61 [PMID:11675031]
  120. Niesler B. (2011) 5-HT(3) receptors: potential of individual isoforms for personalised therapy. Curr Opin Pharmacol 11: 81-6 [PMID:21345729]
  121. Niesler B, Flohr T, Nöthen MM, Fischer C, Rietschel M, Franzek E, Albus M, Propping P and Rappold GA. (2001) Association between the 5' UTR variant C178T of the serotonin receptor gene HTR3A and bipolar affective disorder. Pharmacogenetics 11: 471-5 [PMID:11505217]
  122. Niesler B, Frank B, Kapeller J and Rappold GA. (2003) Cloning, physical mapping and expression analysis of the human 5-HT3 serotonin receptor-like genes HTR3C, HTR3D and HTR3E. Gene 310: 101-11 [PMID:12801637]
  123. Niesler B, Kapeller J, Hammer C and Rappold G. (2008) Serotonin type 3 receptor genes: HTR3A, B, C, D, E. Pharmacogenomics 9: 501-4 [PMID:18466097]
  124. Niesler B, Walstab J, Combrink S, Möller D, Kapeller J, Rietdorf J, Bönisch H, Göthert M, Rappold G and Brüss M. (2007) Characterization of the novel human serotonin receptor subunits 5-HT3C,5-HT3D, and 5-HT3E. Mol. Pharmacol. 72: 8-17 [PMID:17392525]
  125. Noam Y, Wadman WJ and van Hooft JA. (2008) On the voltage-dependent Ca2+ block of serotonin 5-HT3 receptors: a critical role of intracellular phosphates. J. Physiol. (Lond.) 586: 3629-38 [PMID:18566001]
  126. Parker RM, Barnes JM, Ge J, Barber PC and Barnes NM. (1996) Autoradiographic distribution of [3H]-(S)-zacopride-labelled 5-HT3 receptors in human brain. J. Neurol. Sci. 144: 119-27 [PMID:8994113]
  127. Parker RM, Bentley KR and Barnes NM. (1996) Allosteric modulation of 5-HT3 receptors: focus on alcohols and anaesthetic agents. Trends Pharmacol. Sci. 17: 95-9 [PMID:8936343]
  128. Paul D, Yao D, Zhu P, Minor LD and Garcia MM. (2001) 5-hydroxytryptamine3 (5-HT3) receptors mediate spinal 5-HT antinociception: an antisense approach. J. Pharmacol. Exp. Ther. 298: 674-8 [PMID:11454930]
  129. Peters JA, Hales TG and Lambert JJ. (2005) Molecular determinants of single-channel conductance and ion selectivity in the Cys-loop family: insights from the 5-HT3 receptor. Trends Pharmacol. Sci. 26: 587-94 [PMID:16194573]
  130. Price KL and Lummis SC. (2005) FlexStation examination of 5-HT3 receptor function using Ca2+ - and membrane potential-sensitive dyes: advantages and potential problems. J. Neurosci. Methods 149: 172-7 [PMID:16038983]
  131. Reeves DC and Lummis SC. (2002) The molecular basis of the structure and function of the 5-HT3 receptor: a model ligand-gated ion channel (review). Mol. Membr. Biol. 19: 11-26 [PMID:11989819]
  132. Reeves DC and Lummis SC. (2006) Detection of human and rodent 5-HT3B receptor subunits by anti-peptide polyclonal antibodies. BMC Neurosci 7: 27 [PMID:16571125]
  133. Richardson BP, Engel G, Donatsch P and Stadler PA. (1985) Identification of serotonin M-receptor subtypes and their specific blockade by a new class of drugs. Nature 316: 126-31 [PMID:3839291]
  134. Rojas C, Stathis M, Thomas AG, Massuda EB, Massuda EB, Alt J, Zhang J, Rubenstein E, Rubenstein E, Sebastiani S, Cantoreggi S, Snyder SH and Slusher B. (2008) Palonosetron exhibits unique molecular interactions with the 5-HT3 receptor. Anesth. Analg. 107: 469-78 [PMID:18633025]
  135. Rüsch D, Musset B, Wulf H, Schuster A and Raines DE. (2007) Subunit-dependent modulation of the 5-hydroxytryptamine type 3 receptor open-close equilibrium by n-alcohols. J. Pharmacol. Exp. Ther. 321: 1069-74 [PMID:17360702]
  136. Sanger GJ and Nelson DR. (1989) Selective and functional 5-hydroxytryptamine3 receptor antagonism by BRL 43694 (granisetron). Eur. J. Pharmacol. 159: 113-24 [PMID:2540014]
  137. Smith WW, Sancilio LF, Owera-Atepo JB, Naylor RJ and Lambert L. (1988) Zacopride, a potent 5-HT3 antagonist. J. Pharm. Pharmacol. 40: 301-2 [PMID:2900319]
  138. Solt K, Stevens RJ, Davies PA and Raines DE. (2005) General anesthetic-induced channel gating enhancement of 5-hydroxytryptamine type 3 receptors depends on receptor subunit composition. J. Pharmacol. Exp. Ther. 315: 771-6 [PMID:16081679]
  139. Stewart A, Davies PA, Kirkness EF, Safa P and Hales TG. (2003) Introduction of the 5-HT3B subunit alters the functional properties of 5-HT3 receptors native to neuroblastoma cells. Neuropharmacology 44: 214-23 [PMID:12623220]
  140. Sugita S, Shen KZ and North RA. (1992) 5-hydroxytryptamine is a fast excitatory transmitter at 5-HT3 receptors in rat amygdala. Neuron 8: 199-203 [PMID:1346089]
  141. Sun H, McCardy EA, Machu TK and Blanton MP. (1999) Characterization of interaction of 3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester with Torpedo californica nicotinic acetylcholine receptor and 5-hydroxytryptamine3 receptor. J. Pharmacol. Exp. Ther. 290: 129-35 [PMID:10381768]
  142. Tanaka M, Kobayashi D, Murakami Y, Ozaki N, Suzuki T, Iwata N, Haraguchi K, Ieiri I, Kinukawa N, Hosoi M, Ohtani H, Sawada Y and Mine K. (2008) Genetic polymorphisms in the 5-hydroxytryptamine type 3B receptor gene and paroxetine-induced nausea. Int. J. Neuropsychopharmacol. 11: 261-7 [PMID:17697394]
  143. Tecott LH, Maricq AV and Julius D. (1993) Nervous system distribution of the serotonin 5-HT3 receptor mRNA. Proc. Natl. Acad. Sci. U.S.A. 90: 1430-4 [PMID:8434003]
  144. Thompson AJ, Duke RK and Lummis SC. (2011) Binding sites for bilobalide, diltiazem, ginkgolide, and picrotoxinin at the 5-HT3 receptor. Mol. Pharmacol. 80: 183-90 [PMID:21505038]
  145. Thompson AJ, Jarvis GE, Duke RK, Johnston GA and Lummis SC. (2011) Ginkgolide B and bilobalide block the pore of the 5-HT(3) receptor at a location that overlaps the picrotoxin binding site. Neuropharmacology 60: 488-95 [PMID:21059362]
  146. Thompson AJ, Lochner M and Lummis SC. (2007) The antimalarial drugs quinine, chloroquine and mefloquine are antagonists at 5-HT3 receptors. Br. J. Pharmacol. 151: 666-77 [PMID:17502851]
  147. Thompson AJ and Lummis SC. (2008) Antimalarial drugs inhibit human 5-HT(3) and GABA(A) but not GABA(C) receptors. Br. J. Pharmacol. 153: 1686-96 [PMID:18311193]
  148. Thompson AJ and Lummis SC. (2006) 5-HT3 receptors. Curr. Pharm. Des. 12: 3615-30 [PMID:17073663]
  149. Thompson AJ and Lummis SC. (2007) The 5-HT3 receptor as a therapeutic target. Expert Opin. Ther. Targets 11: 527-40 [PMID:17373882]
  150. Thompson AJ, Price KL and Lummis SC. (2011) Cysteine modification reveals which subunits form the ligand binding site in human heteromeric 5-HT3AB receptors. J. Physiol. (Lond.) 589: 4243-57 [PMID:21708905]
  151. Tremblay PB, Kaiser R, Sezer O, Rosler N, Schelenz C, Possinger K, Roots I and Brockmoller J. (2003) Variations in the 5-hydroxytryptamine type 3B receptor gene as predictors of the efficacy of antiemetic treatment in cancer patients. J. Clin. Oncol. 21: 2147-55 [PMID:12775740]
  152. Tzvetkov MV, Meineke C, Oetjen E, Hirsch-Ernst K and Brockmöller J. (2007) Tissue-specific alternative promoters of the serotonin receptor gene HTR3B in human brain and intestine. Gene 386: 52-62 [PMID:17010535]
  153. van Hooft JA, van der Haar E and Vijverberg HP. (1997) Allosteric potentiation of the 5-HT3 receptor-mediated ion current in N1E-115 neuroblastoma cells by 5-hydroxyindole and analogues. Neuropharmacology 36: 649-53 [PMID:9225290]
  154. van Wijngaarden I, Hamminga D, van Hes R, Standaar PJ, Tipker J, Tulp MT, Mol F, Olivier B and de Jonge A. (1993) Development of high-affinity 5-HT3 receptor antagonists. Structure-affinity relationships of novel 1,7-annelated indole derivatives. J. Med. Chem. 36: 3693-9 [PMID:8246239]
  155. Walstab J, Combrink S, Brüss M, Göthert M, Niesler B and Bönisch H. (2007) Aequorin luminescence-based assay for 5-hydroxytryptamine (serotonin) type 3 receptor characterization. Anal. Biochem. 368: 185-92 [PMID:17617370]
  156. Walstab J, Hammer C, Bönisch H, Rappold G and Niesler B. (2008) Naturally occurring variants in the HTR3B gene significantly alter properties of human heteromeric 5-hydroxytryptamine-3A/B receptors. Pharmacogenet. Genomics 18: 793-802 [PMID:18698232]
  157. Walstab J, Hammer C, Lasitschka F, Möller D, Connolly CN, Rappold G, Brüss M, Bönisch H and Niesler B. (2010) RIC-3 exclusively enhances the surface expression of human homomeric 5-hydroxytryptamine type 3A (5-HT3A) receptors despite direct interactions with 5-HT3A, -C, -D, and -E subunits. J. Biol. Chem. 285: 26956-65 [PMID:20522555]
  158. Walstab J, Rappold G and Niesler B. (2010) 5-HT(3) receptors: role in disease and target of drugs. Pharmacol. Ther. 128: 146-69 [PMID:20621123]
  159. Wang ZY, Keith IM, Olson Jr EB, Vidruk EH and Bisgard GE. (2002) Expression of 5-HT3 receptors in primary sensory neurons of the petrosal ganglion of adult rats. Auton Neurosci 95: 121-4 [PMID:11871776]
  160. Wong EH, Clark R, Leung E, Loury D, Bonhaus DW, Jakeman L, Parnes H, Whiting RL and Eglen RM. (1995) The interaction of RS 25259-197, a potent and selective antagonist, with 5-HT3 receptors, in vitro. Br. J. Pharmacol. 114: 851-9 [PMID:7773546]
  161. Yamada K, Hattori E, Iwayama Y, Ohnishi T, Ohba H, Toyota T, Takao H, Minabe Y, Nakatani N and Higuchi T et al.. (2006) Distinguishable haplotype blocks in the HTR3A and HTR3B region in the Japanese reveal evidence of association of HTR3B with female major depression. Biol. Psychiatry 60: 192-201 [PMID:16487942]
  162. Yan D, Pedersen SE and White MM. (1998) Interaction of D-tubocurarine analogs with the 5HT3 receptor. Neuropharmacology 37: 251-7 [PMID:9680250]
  163. Yang J. (1990) Ion permeation through 5-hydroxytryptamine-gated channels in neuroblastoma N18 cells. J. Gen. Physiol. 96: 1177-98 [PMID:2286832]
  164. Yang J, Mathie A and Hille B. (1992) 5-HT3 receptor channels in dissociated rat superior cervical ganglion neurons. J. Physiol. (Lond.) 448: 237-56 [PMID:1375636]
  165. Zeitz KP, Guy N, Malmberg AB, Dirajlal S, Martin WJ, Sun L, Bonhaus DW, Stucky CL, Julius D and Basbaum AI. (2002) The 5-HT3 subtype of serotonin receptor contributes to nociceptive processing via a novel subset of myelinated and unmyelinated nociceptors. J. Neurosci. 22: 1010-9 [PMID:11826129]
  166. Zhou Q, Verdoorn TA and Lovinger DM. (1998) Alcohols potentiate the function of 5-HT3 receptor-channels on NCB-20 neuroblastoma cells by favouring and stabilizing the open channel state. J. Physiol. (Lond.) 507 ( Pt 2): 335-52 [PMID:9518697]