Prostanoid receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

Richard M. Breyer1, Lucie Clapp2, Robert A. Coleman3, Mark Giembycz4, Akos Heinemann5, Rebecca Hills6, Robert L. Jones7, Shuh Narumiya8, Xavier Noref9, Roy Pettipher10, Yukihiko Sugimoto11, David F. Woodward2 and Chengcan Yao6

1. Vanderbilt University, USA
2. University College London, UK
3. Pharmagene Laboratories, UK
4. University of Calgary, Canada
5. Otto Loewi Research Center (for Vascular Biology, Immunology and Inflammation), Austria
6. University of Edinburgh, UK
7. University of Strathclyde, UK
8. Kyoto University Faculty of Medicine, Japan
9. Laboratory for Vascular Translational Science, France
10. Atopix Therapeutics Ltd, UK
11. Kumamoto University, Japan
12. Allergan plc, USA

Abstract

Prostanoid receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Prostanoid Receptors [644]) are activated by the endogenous ligands prostaglandins PGD2, PGE1, PGE2, PGF2α, PGH2, prostacyclin PGF2 and thromboxane A2. Measurement of the potency of PGF2 and thromboxane A2 is hampered by their instability in physiological salt solution; they are often replaced by cicaprost and U46619, respectively, in receptor characterization studies.

Contents

This is a citation summary for Prostanoid receptors in the Guide to Pharmacology database (GtoPdb). It exists purely as an adjunct to the database to facilitate the recognition of citations to and from the database by citation analyzers. Readers will almost certainly want to visit the relevant sections of the database which are given here under database links.

GtoPdb is an expert-driven guide to pharmacological targets and the substances that act on them. GtoPdb is a reference work which is most usefully represented as an on-line database. As in any publication this work should be appropriately cited, and the papers it cites should also be recognized. This document provides a citation for the relevant parts of the database, and also provides a reference list for the research cited by those parts.

Please note that the database version for the citations given in GtoPdb are to the most recent preceding version.
in which the family or its subfamilies and targets were substantially changed. The links below are to the current version. If you need to consult the cited version, rather than the most recent version, please contact the GtoPdb curators.

Database links

Prostanoid receptors
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=58
Introduction to Prostanoid receptors
http://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=58
Receptors
- DP₁ receptor
 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=338
- DP₂ receptor
 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=339
- EP₁ receptor
 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=340
- EP₂ receptor
 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=341
- EP₃ receptor
 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=342
- EP₄ receptor
 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=343
- FP receptor
 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=344
- IP receptor
 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=345
- TP receptor
 http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=346

References

of the central prostaglandin EP3 receptors in cardiovascular regulation in rats. *Neurosci. Lett.* **324**: 61-4
[PMID:11983295]

[PMID:8242228]

[PMID:3026540]

[PMID:2474350]

[PMID:15210817]

[PMID:15210817]

[PMID:22162473]

[PMID:17764960]

[PMID:8641211]

[PMID:9530435]

[PMID:17420269]

[PMID:23221043]

[PMID:18802112]

[PMID:11123248]

[PMID:10484412]

[PMID:19239477]

[PMID:17962517]

43. Baba H, Kohno T, Moore KA and Woolf CJ. (2001) Direct activation of rat spinal dorsal horn neurons by

11

regulates tumor angiogenesis through direct effects on endothelial cell motility and survival. Oncogene 25: 7019-28 [PMID:16732324]

304. Li X and Tai HH. (2013) Activation of thromboxane A2 receptor (TP) increases the expression of monocyte chemoattractant protein -1 (MCP-1)/chemokine (C-C motif) ligand 2 (CCL2) and recruits macrophages to promote invasion of lung cancer cells. *PLoS ONE* **8**: e54073 [PMID:23349788]

and duodenal bicarbonate secretion in rats. *Gastroenterology* **113**: 1553-9 [PMID:9352857]

623. Watanabe K, Kawamori T, Nakatsugi S, Ohta T, Ohuchida S, Yamamoto H, Maruyama T, Kondo K,

628. West JD, Voss BM, Pavliv L, de Caestecker M, Hemnes AR and Carrier EJ. (2016) Antagonism of the thromboxane-prostanoid receptor is cardioprotective against right ventricular pressure overload. Pulm Circ 6: 211-23 [PMID:27252848]

