GABA\(_B\) receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

Abstract

Functional GABA\(_B\) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on GABA\(_B\) receptors [11, 72]) are formed from the heterodimerization of two similar 7TM subunits termed GABA\(_B1\) and GABA\(_B2\) [11, 71, 28, 72, 85]. GABA\(_B\) receptors are widespread in the CNS and regulate both pre- and postsynaptic activity. The GABA\(_B1\) subunit, when expressed alone, binds both antagonists and agonists, but the affinity of the latter is generally 10-100-fold less than for the native receptor. Co-expression of GABA\(_B1\) and GABA\(_B2\) subunits allows transport of GABA\(_B1\) to the cell surface and generates a functional receptor that can couple to signal transduction pathways such as high-voltage-activated Ca\(^{2+}\) channels (Ca\(_{v}\)2.1, Ca\(_{v}\)2.2), or inwardly rectifying potassium channels (Kir3) [12, 11, 5]. The GABA\(_B1\) subunit harbours the GABA (orthosteric)-binding site within an extracellular domain (ECD) venus flytrap module (VTM), whereas the GABA\(_B2\) subunit mediates G protein-coupled signalling [11, 71, 40, 39]. The two subunits interact by direct allosteric coupling [63], such that GABA\(_B2\) increases the affinity of GABA\(_B1\) for agonists and reciprocally GABA\(_B1\) facilitates the coupling of GABA\(_B2\) to G proteins [71, 54, 39]. GABA\(_B1\) and GABA\(_B2\) subunits assemble in a 1:1 stoichiometry by means of a coiled-coil interaction between α-helices within their carboxy-termini that masks an endoplasmic reticulum retention motif (RXRR) within the GABA\(_B1\) subunit but other domains of the proteins also contribute to their heteromerization [5, 71, 15]. Recent evidence indicates that higher order assemblies of GABA\(_B\) receptor comprising dimers of heterodimers occur in recombinant expression systems and in vivo and that such complexes exhibit negative functional cooperativity between heterodimers [70, 22]. Adding further complexity, KCTD (potassium channel tetramerization proteins) 8, 12, 12b and 16 associate as tetramers with the carboxy terminus of the GABA\(_B2\) subunit to impart altered signalling kinetics and agonist potency to the receptor complex [84, 3, 79] and are reviewed by [73]. The molecular complexity of GABAB receptors is further increased through association with trafficking and effector proteins [Schwenk et al., 2016, Nature Neuroscience 19(2): 233-42] and reviewed by [69]. Four isoforms of the human GABA\(_B1\) subunit have been cloned. The predominant GABA\(_B1a\) and GABA\(_B1b\) isoforms, which are most prevalent in neonatal and adult brain tissue respectively, differ in their
ECD sequences as a result of the use of alternative transcription initiation sites. GABA$_{B1\alpha}$-containing heterodimers localise to distal axons and mediate inhibition of glutamate release in the CA3-CA1 terminals, and GABA release onto the layer 5 pyramidal neurons, whereas GABA$_{B1\beta}$-containing receptors occur within dendritic spines and mediate slow postsynaptic inhibition [75, 89]. Only the 1a and 1b variants are identified as components of native receptors [11]. Additional GABA$_B_1$ subunit isoforms have been described in rodents and humans [55] and reviewed by [5].

Contents

This is a citation summary for GABA$_B$ receptors in the Guide to Pharmacology database (GtoPdb). It exists purely as an adjunct to the database to facilitate the recognition of citations to and from the database by citation analyzers. Readers will almost certainly want to visit the relevant sections of the database which are given here under database links.

GtoPdb is an expert-driven guide to pharmacological targets and the substances that act on them. GtoPdb is a reference work which is most usefully represented as an on-line database. As in any publication this work should be appropriately cited, and the papers it cites should also be recognized. This document provides a citation for the relevant parts of the database, and also provides a reference list for the research cited by those parts.

Please note that the database version for the citations given in GtoPdb are to the most recent preceding version in which the family or its subfamilies and targets were substantially changed. The links below are to the current version. If you need to consult the cited version, rather than the most recent version, please contact the GtoPdb curators.

Database links

GABA$_B$ receptors
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=26
Introduction to GABA$_B$ receptors
http://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=26

Receptors
Complexes
GABA$_B$ receptor
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=242

Receptors and Subunits
GABA$_B_1$
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=240
GABA$_B_2$
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=241

Accessory Proteins
KCTD16
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1920
KCTD8
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1917
kctd12b
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1919
KCTD12
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1918

References

47. Jones KA, Borowsky B, Tamm DA, Craig DA, Durkin MM, Dai M, Yao WJ, Johnson M, Gunwaldsen C and Huang LY et al. (1998) GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature 396: 674-9 [PMID:9872315]

