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Abstract. A data-driven and equation-free approach is proposed and discussed to model
ships maneuvers in waves, based on the dynamic mode decomposition (DMD). DMD is
a dimensionality-reduction/reduced-order modeling method, which provides a linear finite-
dimensional representation of a possibly nonlinear system dynamics by means of a set of modes
with associated oscillation frequencies and decay/growth rates. DMD also allows for short-term
future estimates of the system’s state, which can be used for real-time prediction and control.
Here, the objective of the DMD is the analysis and forecast of the trajectories/motions/forces of
ships operating in waves, offering a complementary efficient method to equation-based system
identification approaches. Results are presented for the course keeping of a free-running naval
destroyer (5415M) in irregular stern-quartering waves and for the free-running KRISO Container
Ship (KCS) performing a turning circle in regular waves. Results are overall promising and show
how DMD is able to identify the most important modes and forecast the system’s state with
reasonable accuracy upto two wave encounter periods.

1 INTRODUCTION

To ensure the safety of structures, payload, and crew in adverse weather conditions, ships must
have good seakeeping, maneuverability, and structural performance. In this regard, commercial
and military ships must meet International Maritime Organization (IMO) Guidelines and NATO
Standardization Agreements (STANAG). The prediction capability of ship performance in
waves, along with the understanding of the physics involved, is of utmost importance. Recent
NATO Science and Technology Organization (STO) Applied Vehicle Technology (AVT) task
groups, such as AVT-280 “Evaluation of Prediction Methods for Ship Performance in Heavy
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Weather” (2017-2019) and AVT-348 “Assessment of Experiments and Prediction Methods
for Naval Ships Maneuvering in Waves” (2021-2023) focus on prediction methods for ship
seakeeping and maneuvering in waves, respectively. Recent computational and experimental
fluid dynamics studies have demonstrated the maturity of computational tools for the prediction
of ship performance in waves, including their assessment in extreme sea conditions [1, 2]. The
computational cost associated with the analysis is generally very high, especially if statistical
convergence of relevant estimators is sought after and complex hydro-structural problems are
investigated via high-fidelity solvers [3]. In this context, machine learning and reduced-order
models can help reducing the computational cost providing fast estimates, given that they are
properly trained and/or calibrated. In addition, the ability of these methods to learn from
data makes them suitable for use in digital twins platforms. Finally, reduced-order models are
generally easier to interpret than machine learning approaches and could help shedding light on
the physics involved.

Here, we propose and discuss a data-driven and equation-free approach to the reduced-order
modeling of ships maneuvering in waves, based on the dynamic mode decomposition (DMD).
DMD is a dimensionality-reduction/reduced-order modeling method, which provides a set of
modes with associated oscillation frequencies and decay/growth rates [4]. For linear systems,
these modes/frequencies correspond to the linear normal modes/frequencies of the system. More
generally, DMD modes/frequencies approximate eigenmodes and eigenvalues of the infinite-
dimensional linear Koopman operator, providing a linear finite-dimensional representation of the
(possibly nonlinear) system dynamics [5]. Its growing success, especially in the fluid dynamics
community (e.g. [6, 7, 8]), is due to its equation-free and data-driven nature. The method is
capable of providing accurate assessments of the spatio-temporal coherent structures in complex
flows and systems, also allowing short-term future estimates of the system’s state, which can be
used for real-time prediction and control [9].

In the present work, the objective of the DMD is the analysis and forecast of the finite-
dimensional set of trajectory/motion/force time histories of ships operating in waves, offering a
complementary efficient method to equation-based system identification approaches, e.g. [10, 11].
The efficiency of the method in this context stems from the finite dimensionality of the set of
relevant state variables together with the simplicity of operations required to model the system
dynamics (as opposed to more data/resource-consuming machine learning approaches). This
offers opportunity for integration into digital twin platforms for the data-driven modeling and
prediction of ships in waves.

Results are presented for the course keeping of a free-running naval destroyer (5415M) in
irregular stern-quartering waves at target Fr = 0.33 and sea state 7, using URANS (unsteady
Reynolds-averaged Navier-Stokes) computations from [2]. Results are also presented for the
free-running KRISO Container Ship (KCS), using experimental data from the University of
Iowa IIHR wave basin, focusing on starboard turning circle with rudder angle of 35deg, target
Froude number Fr = 0.157 in regular waves with λ/L = 1 (wavelength to ship-length ratio)
and H/λ = 1/60 (wave-height to wavelength ratio). The present research is conducted in
collaboration with NATO AVT-348 “Assessment of Experiments and Prediction Methods for
Naval Ships Maneuvering in Waves”, and AVT-351 “Enhanced Computational Performance
and Stability & Control Prediction for NATO Military Vehicles”.
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2 DYNAMIC MODE DECOMPOSITION

The DMD formulation and nomenclature is taken from [9]. Specifically, consider a dynamical
system described as

dx

dt
= f(x, t;µ), (1)

where x(t) ∈ Rn represents the system’s state at time t, µ contains the parameters of the system,
and f(·) represents its dynamics. The state x is generally large, with n� 1 and can represents,
for instance, the discretization of partial differential equations at a number of discrete spatial
points, or multi-channel/multi-variable time series.

Considering f(x, t;µ) as unknown, the DMD works with an equation-free perspective. Thus,
only the system measurements are used to approximate the system dynamics and forecast the
future states. Equation 1 is approximated by the DMD as a locally linear dynamical system
defined as

dx

dt
= Ax (2)

with solution

x(t) =

n∑
k=1

φk qk(t) =

n∑
k=1

φk bk exp(ωkt), (3)

where φk and ωk are, respectively, the eigenvectors and the eigenvalues of the matrix A and
the coefficients bk are the coordinates of the initial condition x0 in the eigenvector basis, i.e.
b = Φ−1x0.

Sampling the system every ∆t, the time-discrete state can be expressed as xk = x(k∆t) with
k = 1, ...,m, representing from now on known system measurements. An equivalent discrete-time
representation of the system in Eq. 2 can be written as

xk+1 = Axk, with A = exp(A∆t) (4)

Arranging all the m system measurements in the following two matrices

X =

 | | |
x1 x2 . . . xm−1
| | |

 , X′ =

 | | |
x2 x3 . . . xm

| | |

 , (5)

the matrix A in Eq. 4 can be constructed using the following approximation

A ≈ X′X†, (6)

where X† is the Moore-Penrose pseudoinverse of X, which minimize ‖X′ −AX‖F , where ‖ · ‖F
is the Frobenius norm.

The state-variable evolution in time can be approximated by the same modal expansion of
Eq. 3, where the φk are now the eigenvectors of the approximated matrix A and ωk = ln(λk)/∆t
with λk eigenvalues of the same matrix [9].

In general, the DMD can be viewed as a method to compute the eigenvalues and eingevectors
(modes) of a finite-dimensional linear model that approximates the infinite-dimensional linear
Koopman operator [9], also known as the composition operator. Here, the DMD is applied to
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inherently finite-dimensional data, i.e. ship trajectories/motions/forces in waves, similarly to
DMD applications to power grid load data [12, 13], financial trading strategies [14], sales data
[15], and neural recordings [16]. Furthermore, due to the low dimensionality of data in the
current context, Eq. 6 is computed directly, without the need of performing the singular value
decomposition of X and projecting onto proper orthogonal decomposition modes [9].

3 TEST CASES AND DMD SETUP

This section describes the test cases used for demonstration and the DMD setup. It is worth
noting that, although the DMD is not a machine learning method in the strict sense, its data-
driven nature allows for approaching DMD in a similar way to machine learning. Here the
matrix A is constructed using observed (past) time histories, which are used as training set.
The DMD is then used for the short-term prediction of trajectory/motion/force time histories,
which are compared against true observed (future) data used as test set. As comparison metrics,
the average normalized mean square error (NMSE) is used. The mean square of the modal
coordinates 〈q2k〉 is used as a metrics for modal participation.

3.1 Course Keeping of the 5415M in Irregular Waves

The hull form under investigation is the MARIN model 7967 which is equivalent to
5415M, used as test case for the NATO AVT-280 “Evaluation of Prediction Methods for Ship
Performance in Heavy Weather” [1]. The model is self-propelled and kept on course by a
proportional-derivative controller actuating the rudder angle.

Course-keeping computations are based on the URANS code CFDShip-Iowa V4.5 [17]. CFD
simulations are performed with propeller revolutions per minute fixed to the self-propulsion point
of the model for the nominal speed, corresponding to Fr = 0.33. The simulations are conducted
in irregular long crested waves (following a JONSWAP spectrum), with nominal peak period
Tp = 9.2s and wave heading of 300deg (see Fig. 1). The nominal significant wave height is equal
to 7m, corresponding to sea state 7 (high), according to the World Meteorological Organization
definition. It may be noted that the simulation conditions are close to a resonance condition for
the roll. The six degrees of freedom rigid body equations of motion are solved to calculate linear
and angular motions of the ship. A simplified body-force model is used for the propeller, which
prescribes axisymmetric body force with axial and tangential components. The total number of

Figure 1: CFD snapshot of the 5415M test case (left) and a photograh of the IIHR wave basin with the
KCS model (right).
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grid points is about 45M. Further details can be found in [2] and [1] where also potential flow
computations and experimental data are presented and discussed.

The state variables used for DMD are the ship six degrees of freedom (surge, sway, heave,
roll, pitch, yaw; ship motions in the carriage coordinate system, projected onto the ship axes)
plus the rudder angle. In addition, first and second time derivatives of all variables are included
in the data set, computed by a fourth-order finite difference scheme. The use of derivatives
enables a better description of the system dynamics and defines a higher-dimensional space
potentially more amenable to an accurate linear representation. All variables are standardized,
i.e. translated and scaled to have zero mean and unit variance. The matrix A is built using about
five encounter waves (corresponding to 1766 time steps). The prediction and test sets span the
same length. Finally, the prediction is built using all modes/frequencies, leaving reduced-order
studies to future research.

3.2 Turning Circle of the KCS in Regular Waves

The second test case is the starboard turning circle of the free-running KCS in regular waves
with constant rudder angle of 35deg. Data are taken from experiments conducted at the IIHR
wave basin, which is shown in Fig. 1 and whose characteristics are given in [18]. The model
length is L = 2.7m and the nominal speed corresponds to Fr = 0.157. The propeller RPM are
fixed and provide the nominal speed in calm water. The regular wave parameters are λ/L = 1
and H/λ = 1/60.

The state variables used for DMD are the x, y, and z coordinates (Earth-coordinate system) of
a reference point placed amidships, pitch and roll motions, turning rate, u, v, and w component
of the ship velocity (projected onto the ship axes), rudder angle, propeller thrust, and torque.
As in the previous test case, first and second time derivatives are included in the data set
and all variables are standardized. The matrix A is built using about four encounter waves
(corresponding to 132 time steps), while the prediction and test sets span the same length.
Predictions are build using all modes/frequencies.

4 RESULTS

The following subsections describe the DMD results for the test cases, discussing the DMD
analysis of the system dynamics (including complex modal frequencies, modal participation, and
most energetic modes) and the future prediction of the system’s state.
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Figure 2: DMD complex modal frequencies, modal participation, and two most energetic modes (from
left to right, respectively) for the 5415M test case.
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4.1 5415M Course Keeping in Irregular Waves

Figure 2 presents the DMD results for the system dynamics. Specifically, the left figure
shows the complex modal frequencies provided by DMD. The center figure shows the modal
participation as a function of the frequency imaginary part. Finally, the right figure presents
the magnitude of components for the two most energetic couples of complex-conjugate modes,
where for the sake of clarity and simplicity derivatives are not shown. It may be noted how the
dynamic is largely participated by one couple only (see Fig. 2 center, namely represented by
the modes k = 6, 7). This couple presents a frequency close to the roll resonance frequency (see,
e.g., [1]) and mainly involves roll, pitch, yaw, rudder, and to a lesser extent heave (see blue line
in Fig. 2 right). The second couple is significantly less energetic and has a smaller frequency
(slower dynamics). It mainly involves planar motion variables, i.e. surge, sway, yaw, and to a
lesser extent rudder (see black line in Fig. 2 right).

The short-term prediction of the system dynamics by DMD is shown in Fig. 3. The observed
(past) time histories are depicted in black, the predicted (future) time histories are in blue,
while the true observed (future) time histories are presented with a dashed black line. All
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Figure 3: DMD prediction and average error for the 5415M test case (standardized variables).
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variables are shown in their standardized form and time values are normalized with the average
encounter period. The NMSE of the prediction is shown at the bottom in red. Roll, pitch, and
rudder present the most accurate prediction, whereas sway is found the most difficult variables
to forecast. On average, variables are reasonably predicted upto two encounter periods. After,
the prediction becomes less accurate especially for sway and yaw.

4.2 KCS Turning Circle in Regular Waves

Figure 4 presents the results of the DMD of the system dynamics. Again, the left figure
shows the complex modal frequencies provided by DMD. The center figure shows the modal
participation as a function of the frequency (imaginary part), while the right figure presents
the two most energetic couples of complex-conjugate modes (magnitude of components shown;
derivatives not shown). It may be noted how the dynamic is largely participated by one mode
with zero frequency (see Fig. 4 center; the real part, not shown, is also zero), setting an offset
for the data. The first most energetic couple of complex-conjugate modes (k = 2, 3) correspond
to a quite slow dynamics and mainly involves trajectory and planar motion variables, i.e. x, y,
v and to a lesser extent z, rate of turn, and u. The second couple presents a larger frequency
(faster dynamics, due to the waves). It mainly involves z, roll, pitch, rate of turn, u, v, w, thrust,
and torque. It may be noted how the rudder does not participate in these dynamics, which may
appear unexpected: in this demonstration, the rudder is kept fixed at 35deg. Certainly, the ship
dynamics depends on the rudder angle, but here the rudder is fixed (see the rudder time history
in Fig. 5) and therefore no rudder dynamics is observed.

Figure 5 shows the results of the DMD in producing the short-term prediction of the system
dynamics, where the observed (past) time histories are depicted in black, the predicted (future)
time histories in blue, the true observed (future) time histories are presented with a dashed black
line. All variables are standardized and time values are normalized with the average encounter
period. The NMSE of the prediction is shown at the bottom in red. The trajectory (x and y)
is very well predicted, also due to its slow dynamics. Pitch, u, thrust, and torque presents a
faster dynamics (due to the waves) and are also reasonably predicted. Roll, turning rate, and
v are found the most difficult variables to forecast. Also in this case, variables are reasonably
predicted upto two encounter periods. After, the prediction becomes overall less accurate.
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Figure 4: DMD complex modal frequencies, modal participation, and two most energetic modes (from
left to right, respectively) for the KCS test case.
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Figure 5: DMD prediction and average error for KCS test case (standardized variables).

8



M. Diez, A. Serani, E.F. Campana, and F. Stern

5 CONCLUSIONS AND FUTURE WORK

A data-driven and equation-free modeling approach for ship maneuvers in waves
was presented and discussed, based on the dynamic mode decomposition of ship
trajectory/motion/force time histories. The DMD provides a data-driven and equation-free
approach to the linear representation of the system dynamics, allowing for (a) extracting
knowledge on the system dynamics and and (b) forecasting the system’s state in the near future.
Results were shown for course keeping data of the self-propelled 5415M in irregular waves and
turning-circle data of the self-propelled KCS in regular waves. Time histories were provided by
CFD and EFD for 5415M and KCS, respectively.

Results are overall promising. The analysis is very efficient and suitable for real-time
predictions. The DMD model is able to extract the most important modes and forecast with
reasonable accuracy the system’s state upto two wave encounter periods. After this time horizon,
the prediction is no longer accurate and the methodology needs improvements.

Future research includes a systematic study of observed data size, time step, and time-
derivative order along with the most effective choice of the variable set and possibly coordinate
systems, including whenever appropriate dimensional analysis [8]. Methodological advancements
that are expected to provide benefits include DMD with control [19], DMD with time delay
embedding [20], and multi-resolution DMD [5]. Finally, the combination of DMD with artificial
neural network approaches [21] is expected to overcome some of the limitations of the DMD
(i.e., its linearity) providing more flexible architectures [22] to address highly-nonlinear system
dynamics.
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